Volume 35, Issue 5 (August 2024)                   Studies in Medical Sciences 2024, 35(5): 350-360 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefian Jazi S, Beikzadeh B. IMMUNOINFORMATICS STUDY OF ACINETOBACTER BAUMANNII OMPA PROTEIN AND COMPARISON OF INDUCED IMMUNE RESPONSES IN DIFFERENT TIME INTERVALS OF INJECTION. Studies in Medical Sciences 2024; 35 (5) :350-360
URL: http://umj.umsu.ac.ir/article-1-6267-en.html
Assistant Professor, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran (Corresponding Author) , b.beikzadeh@bio.ui.ac.ir
Abstract:   (592 Views)
Background & Aims: Acinetobacter baumannii, as one of the causes of hospital infection, causes the death of many patients every year. Due to the high antibiotic resistance, controlling the infections has faced a challenge. In addition, no effective vaccine has been produced for this bacterium. Therefore, in the present study, using immunoinformatics tools, OmpA protein as a vaccine candidate was used to investigate the immune responses in different time points of administration so that in addition to introducing a vaccine candidate, the best timing of its administration was also provided.
Methods: In this study, The Acinetobacter baumannii OmpA protein was chosen and the epitopes of T and B lymphocytes were predicted using immunoinformatics servers. Then, the antigenic properties, non-allergenicity, non-toxicity, physical and chemical properties, and binding ability to innate and adaptive immune receptors were evaluated. Finally, the ability to induce immune responses in five different injection programs was investigated.
Results: The results showed that OmpA is an antigenic, safe, hydrophilic protein with good solubility. This protein can bind to innate and adaptive immune receptors and can induce humoral and cellular immune responses in three-time and four-time injections.
Conclusion: In total, this study shows that OmpA, in addition to its immunogenic properties, as a vaccine candidate, can induce immune mediators by administering it three times, however, four times administrations of this protein create a stronger immune response.
Full-Text [PDF 997 kb]   (160 Downloads)    
Type of Study: Research | Subject: ایمونولوژی

References
0. Heidarinia H, Ghadiri K, Zargaran FN, Lorestani RC, Rostamian M. An In silico Study on B-cell Epitope Mapping of Acinetobacter baumannii Outer Membrane Protein K. CURR COMPUT-AID DRUG 2024. [PMID: 38288827] [DOI:10.2174/0115734099281401240118054834]
1. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis 2014;71(3):292-301. [PMID: 24376225] [DOI:10.1111/2049-632X.12125]
2. Whiteway C, Breine A, Philippe C, Van der Henst C. Acinetobacter baumannii. Trends Microbiol 2022;30(2):199-200. [PMID: 34836792] [DOI:10.1016/j.tim.2021.11.008]
3. Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci 2020;27:1-8. [PMID: 31954394] [DOI:10.1186/s12929-020-0617-7]
4. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021;10(3):373. [PMID: 33808905] [DOI:10.3390/pathogens10030373] [PMCID: PMC8003822]
5. Uppalapati SR, Sett A, Pathania R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front. microbiol 2020;11:589234. [PMID: 33123117] [DOI:10.3389/fmicb.2020.589234] [PMCID: PMC7573547]
6. Ceparano M, Baccolini V, Migliara G, Isonne C, Renzi E, Tufi D, et al. Acinetobacter baumannii isolates from COVID-19 patients in a hospital intensive care unit: molecular typing and risk factors. Microorganisms 2022;10(4):722. [PMID: 35456774] [DOI:10.3390/microorganisms10040722] [PMCID: PMC9026468]
7. Andre FE, Booy R, Bock HL, Clemens J, Datta SK, John TJ, et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World health organization 2008;86:140-6. [PMID: 18297169] [DOI:10.2471/BLT.07.040089] [PMCID: PMC2647387]
8. Galdiero S, Falanga A, Cantisani M, Tarallo R, Elena Della Pepa M, et al. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr. Protein Pept. Sci 2012;13(8):843-54. [PMID: 23305369] [DOI:10.2174/138920312804871120] [PMCID: PMC3706956]
9. Beikzadeh B, Nikbakht Brujeni G. Protection against neonatal enteric colibacillosis employing E. Coli-derived outer membrane vesicles in formulation and without vitamin D3. BMC Res. Notes 2018;11(1):1-8. [PMID: 29769118] [DOI:10.1186/s13104-018-3442-2] [PMCID: PMC5956550]
10. Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, Hyun SH, et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell. Microbiol 2005;7(8):1127-38. [PMID: 16008580] [DOI:10.1111/j.1462-5822.2005.00538.x]
11. Yang N, Jin X, Zhu C, Gao F, Weng Z, Du X, et al. Subunit vaccines for Acinetobacter baumannii. Front. immunol 2023;13:1088130. [PMID: 36713441] [DOI:10.3389/fimmu.2022.1088130] [PMCID: PMC9878323]
12. Kaushik V, Jain P, Akhtar N, Joshi A, Gupta LR, Grewal RK, et al. Immunoinformatics-aided design and in vivo validation of a peptide-based multiepitope vaccine targeting canine circovirus. ACS Pharmacol. Transl. Sci 2022;5(8):679-91. [URL:] [DOI:10.1021/acsptsci.2c00130]
13. He C, Yang J, Hong W, Chen Z, Peng D, Lei H, et al. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat. Commun 2022;13(1):5459. [PMID: 36115859] [DOI:10.1038/s41467-022-33209-9] [PMCID: PMC9482656]
14. Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC bioinformatics 2022;23(1):319. [PMID: 35931960] [DOI:10.1186/s12859-022-04816-6] [PMCID: PMC9354309]
15. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014;41(4):529. [PMID: 25367570] [DOI:10.1016/j.immuni.2014.10.004] [PMCID: PMC4223692]
16. Beikzadeh B. Immunoinformatics design of multi-epitope vaccine using OmpA, OmpD and enterotoxin against non-typhoidal salmonellosis. BMC bioinformatics 2023;24(1):63. [PMID: 36823524] [DOI:10.1186/s12859-023-05183-6] [PMCID: PMC9950014]
17. Beikzadeh B, Ahangarzadeh S. In-Silico Design of a Novel Multi-Epitope Fimbriae Vaccine against Non-typhoidal Salmonella. Vac. Res 2023;10(1):23-33. [URL:] [DOI:10.61186/vacres.10.1.23]
18. Sanches RC, Tiwari S, Ferreira LC, Oliveira FM, Lopes MD, Passos MJ, et al. Immunoinformatics design of multi-epitope peptide-based vaccine against Schistosoma mansoni using transmembrane proteins as a target. Front. Immunol 2021;12:621706. [PMID: 33737928] [DOI:10.3389/fimmu.2021.621706] [PMCID: PMC7961083]
19. Seok C, Baek M, Steinegger M, Park H, Lee GR, Won J. Accurate protein structure prediction: what comes next. Biodesign; 2021. [URL:] [DOI:10.34184/kssb.2021.9.3.47]
20. Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol 2005;17(1):1-14. [PMID: 15585605] [DOI:10.1093/intimm/dxh186]
21. Castiglione F, Deb D, Srivastava AP, Liò P, Liso A. From infection to immunity: understanding the response to SARS-CoV2 through in-silico modeling. Front. Immunol 2021;12:646972. [PMID: 34557181] [DOI:10.3389/fimmu.2021.646972] [PMCID: PMC8453017]
22. Ud-Din M, Albutti A, Ullah A, Ismail S, Ahmad S, Naz A, et al. Vaccinomics to design a multi-epitopes vaccine for Acinetobacter baumannii. Int. J. Environ. Res. Public Health 2022;19(9):5568. [PMID: 35564967] [DOI:10.3390/ijerph19095568] [PMCID: PMC9104312]
23. Osterloh A. Vaccination against bacterial infections: challenges, progress, and new approaches with a focus on intracellular bacteria. Vaccines 2022;10(5):751. [PMID: 35632507] [DOI:10.3390/vaccines10050751] [PMCID: PMC9144739]
24. Wang Z, Röst G, Moghadas SM. Delay in booster schedule as a control parameter in vaccination dynamics. J. Math. Biol 2019;79(6):2157-82. [PMID: 31494722] [DOI:10.1007/s00285-019-01424-6] [PMCID: PMC6858909]
25. Omer SB, Salmon DA, Orenstein WA, Dehart MP, Halsey N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. NEJM 2009;360(19):1981-8. [PMID: 19420367] [DOI:10.1056/NEJMsa0806477]
26. Briere EC, Rubin L, Moro PL, Cohn A, Clark T, Messonnier N. Prevention and control of haemophilus influenzae type b disease: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep 2014;63(RR-01):1-14. [PMID: 24572654]
28. Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci. Rep 2021;11(1):24485. [PMID: 34966175] [DOI:10.1038/s41598-021-03932-2] [PMCID: PMC8716528]
29. Singh A, Thakur M, Sharma LK, Chandra K. Designing a multi-epitope peptide based vaccine against SARS-CoV-2. Sci. Rep 2020;10(1):16219. [PMID: 33004978] [DOI:10.1038/s41598-020-73371-y] [PMCID: PMC7530768]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb