Volume 35, Issue 4 (July 2024)                   Studies in Medical Sciences 2024, 35(4): 301-312 | Back to browse issues page

Ethics code: IR.SSRI.REC.1400.1232


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beygi S, Abbasi M. THE EFFECTS OF HIGH-INTENSITY INTERVAL EXERCISE ON LIVER REDOX STATUS AND ENZYMES IN MALE WISTAR RATS. Studies in Medical Sciences 2024; 35 (4) :301-312
URL: http://umj.umsu.ac.ir/article-1-6233-en.html
Assistant Professor, Department of Exercise Physiology, Ilam Branch. Islamic Azad University, Ilam, Iran (Corresponding Author) , abbasimaryam60@yahoo.com
Abstract:   (461 Views)
Background & Aims: It is well-established that high-intensity interval exercise (HIIE) contributes to an increase in reactive oxygen species, accompanied by enhanced antioxidant activity. However, the effects of HIIE on liver tissue remain poorly understood. This study aimed to evaluate the effects of HIIE on liver redox status and liver enzymes in male Wistar rats.
Materials and Methods: This study employed a true experimental research design, specifically a post-test-only control group design. Twenty-five male Wistar rats were randomly divided into three groups: control (Control, n = 8), one-hour HIIE exercise group (HIIE-1h, n = 8), which were sacrificed one hour after training, and twenty-four-hour HIIE exercise group (HIIE-24h, n = 9), which were sacrificed 24 hours after training. The two HIIE groups underwent a single treadmill run consisting of 10 bouts of high-intensity exercise (85–100% of VO2max) lasting 1 minute each, at 28 m/min, with a 10° incline, interspersed with 2 minutes of active recovery at 10 m/min, with no incline. Superoxide dismutase (SOD), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) enzymes were measured in liver tissue. Data analysis was performed using SPSS statistical software (version 19) at a 95% confidence level. One-way analysis of variance (ANOVA) was used to analyze the research's levels of dependent variables.
Results: The study results showed that the SOD level in liver tissue was significantly lower in the HIIE-1h (P = 0.004) and HIIE-24h (P = 0.008) groups compared to the control group (P < 0.05). Additionally, the MDA level in liver tissue was significantly higher in the HIIE-1h (P = 0.002) and HIIE-24h (P = 0.005) groups compared to the control group. The levels of ALT in the HIIE-1h (P = 0.003) and HIIE-24h (P = 0.02) groups and AST in the HIIE-24h (P = 0.004) group were significantly higher compared to the control group.
Conclusion: HIIE leads to oxidative stress and an increase in liver damage marker enzymes. These changes persist for at least 24 hours after exercise, highlighting the importance of focusing on recovery time after HIIE. However, further studies are needed in this field.
Full-Text [PDF 584 kb]   (173 Downloads)    
Type of Study: Research | Subject: Exercise physiology

References
1. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21): R1147-R1151. [DOI:10.3390/livers2040023]
2. Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. Livers. 2022; 2(4):283-314. [DOI:10.3390/livers2040023]
3. Chen L, Liu Y, Zhang Y, Zhang Y, Wang W, Han H, Yang C, Dong X. Superoxide dismutase ameliorates oxidative stress and regulates liver transcriptomics to provide therapeutic benefits in hepatic inflammation. Peer J. 2023; 11: e15829. https://doi:10.7717/peerj.15829 [DOI:10.7717/peerj.15829]
4. Czerska M, Mikołajewska K, Zieliński M, Gromadzińska J, Wąsowicz W. Today's oxidative stress markers. Med Pr. 2015;66(3):393-405. https://doi:10.13075/mp.5893.00137 [DOI:10.13075/mp.5893.00137]
5. Thirupathi A, Wang M, Lin JK, Fekete G, István B, Baker JS, Gu Y. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. Biomed Res Int. 2021; 2021:1947928. doi: 10.1155/2021/1947928. [DOI:10.1155/2021/1947928]
6. Hoene M, Weigert C. The stress response of the liver to physical exercise. Exercise immunology review. 2010 Jan 1; 16. [Google Scholar]
7. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr. 2018;18(2):89-101. https://doi:10.3727/105221617X15124844266408 [DOI:10.3727/105221617X15124844266408]
8. Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients. 2018;10(3):298. https://doi:10.3390/nu10030298 [DOI:10.3390/nu10030298]
9. Shephard RJ, Johnson N. Effects of physical activity upon the liver. Eur J Appl Physiol. 2015;115(1):1-46. https://doi:10.1007/s00421-014-3031-6 [DOI:10.1007/s00421-014-3031-6]
10. Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int J Environ Res Public Health. 2021;18(13):7201. https://doi:10.3390/ijerph18137201 [DOI:10.3390/ijerph18137201]
11. Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494-503. https://doi:10.1136/bjsports-2015-095841 [DOI:10.1136/bjsports-2015-095841]
12. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012; 590 (5): 1077-1084. https://doi:10.1113/jphysiol.2011.224725 [DOI:10.1113/jphysiol.2011.224725]
13. Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res. 2020; 69(4): 565-598. https://doi:10.33549/physiolres.934371 [DOI:10.33549/physiolres.934371]
14. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016; 2016: 7239639. https://doi doi:10.1155/2016/7239639 [DOI:10.1155/2016/7239639]
15. Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ. 2015 39(4):352-9. doi: 10.1152/advan.00106.2014. [DOI:10.1152/advan.00106.2014]
16. Fasihiyan M, Asadi Y, Pakravan R, Haji S, Nourshahi M. High-intensity exercise training and the immune system: A new role of lactate. JEOCT. 2023; 3(2): 93-8. https://doi: 10.22034/jeoct.2023.391819.1074 [Google Scholar]
17. Bari MA, MahmoodAlobaidi MA, Ansari HA, Parrey JA, Ajhar A, Nuhmani S, Alghadir AH, Khan M. Effects of an aerobic training program on liver functions in male athletes: a randomized controlled trial. Sci Rep. 2023;13(1):9427. doi: 10.1038/s41598-023-36361-4. [DOI:10.1038/s41598-023-36361-4]
18. Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free Radic Res. 2017;51(2):222-236. https://doi:10.1080/10715762.2017.1291942 [DOI:10.1080/10715762.2017.1291942]
19. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, Mendonça VA, Lacerda AC, Massensini AR, Poortamns JR, Meeusen R, Leite HR. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav. 2018; 184:6-11. doi: 10.1016/j.physbeh.2017.10.027. [DOI:10.1016/j.physbeh.2017.10.027]
20. Pouraboli I, Farzad Amir Ebrahimi F. Evaluation of the protective effects of the hydroalcoholic extract of nepeta ispahanicia boiss against acute induced by CCL4 in male Wistar rats: an experimental study. SMSJ 2020; 31 (5):410-422. http://umj.umsu.ac.ir/article-1-5085-en.html (Persian) [Google Scholar]
21. Ogonovszky H, Sasvári M, Dosek A, Berkes I, Kaneko T, Tahara S, Nakamoto H, Goto S, Radák Z. The effects of moderate, strenuous, and overtraining on oxidative stress markers and DNA repair in rat liver. Can J Appl Physiol. 2005; 30(2):186-95. doi: 10.1139/h05-114. [DOI:10.1139/h05-114]
22. Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh I, Koltai E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol. 2017; 12: 285-290. doi: 10.1016/j.redox.2017.02.015. [DOI:10.1016/j.redox.2017.02.015]
23. Huang CC, Huang WC, Yang SC, Chan CC, Lin WT. Ganoderma tsugae hepatoprotection against exhaustive exercise-induced liver injury in rats. Molecules. 2013;18(2):1741-1754. https://doi:10.3390/molecules18021741 [DOI:10.3390/molecules18021741]
24. Gjevestad GO, Holven KB, Ulven SM. Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review. Curr Cardiovasc Risk Rep. 2015; 9(7):34. https://doi:10.1007/s12170-015-0463-4 [DOI:10.1007/s12170-015-0463-4]
25. van Wijck K, Lenaerts K, van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011; 6(7): e22366. https://doi:10.1371/journal.pone.0022366 [DOI:10.1371/journal.pone.0022366]
26. Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett. 2003; 144(3):279-288. https://doi:10.1016/s0378-4274(03)00239-x [DOI:10.1016/S0378-4274(03)00239-X]
27. Sabiu S, Wudil A, Sunmonu T. Combined administration of Telfaira occidentalis and Vernonia amygdalina leaf powders ameliorates garlic-induced hepatotoxicity in Wistar rats. Pharmacologia. 2014; 5(5):191-8. [DOI:10.5567/pharmacologia.2014.191.198]
28. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci. 2010; 86(1-2):39-44. https://doi:10.1016/j.lfs.2009.11.003 [DOI:10.1016/j.lfs.2009.11.003]
29. Dos Santos JDM, Aidar FJ, DE Matos DG, DE Oliveira JU, Júnior ASS, Dos Santos JL, Marçal AC, DE Araújo SS. The 6-week effects of HIIT on biomarkers of tissue and oxidative damage in wistar rats hreviously supplemented with pyridoxine. Int J Exerc Sci. 2021; 14(7):369-381. PMID: 34122719; [PMID]
30. Cho SY, Chung YS, Yoon HK, Roh HT. Impact of exercise intensity on systemic oxidative stress, inflammatory responses, and sirtuin levels in healthy male volunteers. Int J Environ Res Public Health. 2022; 19(18):11292. https://doi:10.3390/ijerph191811292 [DOI:10.3390/ijerph191811292]
31. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243-1276. http://doi:10.1152/physrev.00031.2007 [DOI:10.1152/physrev.00031.2007]
32. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double-edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014; 2:702-14. http://doi:10.1016/j.redox.2014.05.006 [DOI:10.1016/j.redox.2014.05.006]
33. Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006; 36(4):327-358. http://doi:10.2165/00007256-200636040-00004 [DOI:10.2165/00007256-200636040-00004]
34. Kawanishi N, Yano H, Mizokami T, Takahashi M, Oyanagi E, Suzuki K. Exercise training attenuates hepatic inflammation, fibrosis and macrophage infiltration during diet induced-obesity in mice. Brain Behav Immun. 2012; 26(6): 931-941. http://doi:10.1016/j.bbi.2012.04.006 [DOI:10.1016/j.bbi.2012.04.006]
35. Fukui A, Kawabe N, Hashimoto S, Murao M, Nakano T, Shimazaki H, Kan T, Nakaoka K, Ohki M, Takagawa Y, Takamura T, Kamei H, Yoshioka K. Vitamin E reduces liver stiffness in nonalcoholic fatty liver disease. World J Hepatol. 2015; 7(27):2749-56. doi: 10.4254/wjh.v7.i27.2749. [DOI:10.4254/wjh.v7.i27.2749]
36. Burtis C, Ashwood E, Bruns D. Clinical biochemistry tietz: analyte and pathophysiology. Translate by: Amirrasouli H. Tehran: Ketab Arjmand publication; 2011
37. Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species. Front Biosci. 2007; 12: 4826-38. doi: 10.2741/2431. [DOI:10.2741/2431]
38. Contreras-Zentella ML, Hernández-Muñoz R. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxid Med Cell Longev. 2016; 2016:3529149. http://doi:10.1155/2016/3529149 [DOI:10.1155/2016/3529149]
39. Shirpoor M, Tofighi A, Shirpoor A, Chodari Leila, Pourjabali M. Effects of moderate exercise, curcumin and their combination on levels of leptin and hepatic enzymes in elderly male rats. SMSJ. 2020; 31(7): 539-548. (Persian). [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb