Volume 34, Issue 9 (12-2023)                   Studies in Medical Sciences 2023, 34(9): 518-534 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahbazi Azar S, Hasani Kumle S H, Yamchi A, Shahbazi M. OPTIMIZATION OF PRODUCTION OF RECOMBINANT ROMIPLOSTIM PEPTIBODY IN ESCHERICHIA COLI. Studies in Medical Sciences 2023; 34 (9) :518-534
URL: http://umj.umsu.ac.ir/article-1-6084-en.html
Associate Professor of Agricultural Biochemistry and Biotechnology, Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran (Corresponding Author) , S_shahabzi58@yahoo.com
Abstract:   (1620 Views)
Background & Aim: Romiplastim is a fusion protein that has the same function as thrombopoietin in the body and thereby, stimulates bone marrow to produce more platelets. Thrombopoietin is a hormone that controls the production of platelets. Romiplastim is used in the treatment of thrombocytopenia in patients with chronic immune thrombocytopenia (ITP) when other drugs like corticosteroids and immunoglobulins or splenectomy have not treated them. The aim of this study was cloning and optimization of gene expression conditions and purification of recombinant Romiplastim peptibody in Escherichia coli bacteria.
Materials & Methods: In this practical study, the independent variables used included the amount of ODs (0.4, 0.8 and 1.2) at a wavelength of 600 nm, IPTG concentration (0.5, 1 and 1.5 mM) and the type of culture medium (LB, TB, M9). The Response Surface Methodology (RSM) was used in the form of central composite design with Design-Expert 12 software to predict independent variables on the amount of romiplastim production.
Results: OD equal to 0.8, IPTG concentration equal to 1 mM and LB culture medium were optimized for the production of recombinant Romiplast peptibody.
Conclusion: Since the optimal production of peptibody was desired, cloning and optimization of conditions of gene expression and purification of Romiplastim peptibody in BL21 strain of Escherichia coli bacteria were done with the most optimal conditions which were done by RSM. Also, for correct folding of the protein, the refolding step was used at the beginning of the purification. Medicinal proteins play an important role in modern molecular medicine treatments.

 
Full-Text [PDF 655 kb]   (842 Downloads)    
Type of Study: Research | Subject: داروسازی

References
1. Kuter DJ, Bussel JB, Lyons RM, Pullarkat V, Gernsheimer TB, Senecal FM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet 2008;371(9610):395-403. http://dx.doi.org/10.1016/S0140-6736(08)60203-2. [DOI:10.1016/S0140-6736(08)60203-2]
2. Jamali F, Lemery S, Ayalew K, Robottom S, Robie-Suh K, Rieves D, et al. Romiplostim for the treatment of chronic immune (idiopathic) thrombocytopenic purpura. Oncology (Williston Park) 2009;23(8):704-9. [Google Scholar]
3. Waknine Y. FDA Approvals: omacor, nuflexxa, combunox, and others. Medscape Today: http://www. medscape. com/viewarticle/495709. Última Visita 2004;18.
4. Mareddy C, Kalra M, Sachdeva A. Generic romiplostim for children with persistent or chronic immune thrombocytopenia: Experience from a tertiary care centre in North India. Br J Haematol 2022;197(5):618-26. http://dx.doi.org/10.1111/bjh.18126. [DOI:10.1111/bjh.18126]
5. Nicholl DST. An Introduction to Genetic Engineering. In: An Introduction to Genetic Engineering. Cambridge: Cambridge University Press; 2008. p. 1-1. [DOI:10.1017/CBO9780511800986]
6. Farrukh S, Fan X, Mustafa K, Hussain A, Ayoub M, Younas M. Nanotechnology and the generation of sustainable hydrogen. Springer Nature; 2020. [DOI:10.1007/978-3-030-60402-8]
7. Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW. A review of romiplostim mechanism of action and clinical applicability. Drug Des Devel Ther 2021;15:2243-68. http://dx.doi.org/10.2147/DDDT.S299591. [DOI:10.2147/DDDT.S299591]
8. Nishida T, Yamaguchi M, Tatara Y, Kashiwakura I. Proteomic changes by radio-mitigative thrombopoietin receptor agonist romiplostim in the blood of mice exposed to lethal total-body irradiation. Int J Radiat Biol 2020;96(9):1125-34. http://dx.doi.org/10.1080/09553002.2020.1787546 [DOI:10.1080/09553002.2020.1787546]
9. Piccin A, Amaddii G, Natolino F, Billio A, Cortelazzo S. Idiopathic thrombocytopenic purpura resistant to eltrombopag, but cured with romiplostim. Blood Transfus 2014;12 Suppl 1:s149-50. http://dx.doi.org/10.2450/2013.0289-12. [Google Scholar]
10. Yang AS. Development of romiplostim: a novel engineered peptibody. Semin Hematol 2015;52(1):12-5. http://dx.doi.org/10.1053/j.seminhematol.2014.10.007. [DOI:10.1053/j.seminhematol.2014.10.007]
11. Ghanima W, Cooper N, Rodeghiero F, Godeau B, Bussel JB. Thrombopoietin receptor agonists: ten years later. Haematologica 2019;104(6):1112-23. http://dx.doi.org/10.3324/haematol.2018.212845. [DOI:10.3324/haematol.2018.212845]
12. Nurden P, Kessler Cm S, Ma L, Ha S. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Commentary 2008; (9610). [Google Scholar]
13. Al-Samkari H, Nagalla S. Efficacy and safety evaluation of avatrombopag in immune thrombocytopenia: analyses of a phase III study and long-term extension. Platelets 2022;33(2):257-64. http://dx.doi.org/10.1080/09537104.2021.1881952 [DOI:10.1080/09537104.2021.1881952]
14. Cwirla SE, Balasubramanian P, Duffin DJ, Wagstrom CR, Gates CM, Singer SC, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997;276(5319):1696-9. http://dx.doi.org/10.1126/science.276.5319.1696. [DOI:10.1126/science.276.5319.1696]
15. Shimamoto G, Gegg C, Boone T, Quéva C. Peptibodies: A flexible alternative format to antibodies. MAbs 2012;4(5):586-91. http://dx.doi.org/10.4161/mabs.21024. [DOI:10.4161/mabs.21024]
16. Ning L, Li Z, Bai Z, Hou S, He B, Huang J, et al. Computational design of antiangiogenic peptibody by fusing human IgG1 fc fragment and HRH peptide: Structural modeling, energetic analysis, and dynamics simulation of its binding potency to VEGF receptor. Int J Biol Sci 2018;14(8):930-7. http://dx.doi.org/10.7150/ijbs.24582. [DOI:10.7150/ijbs.24582]
17. Fayaz S, Fard-Esfahani P, Golkar M, Allahyari M, Sadeghi S. Expression, purification and biological activity assessment of romiplostim biosimilar peptibody. Daru 2016;24(1). http://dx.doi.org/10.1186/s40199-016-0156-7. [DOI:10.1186/s40199-016-0156-7]
18. Zurawa-Janicka D, Wenta T, Jarzab M, Skorko-Glonek J, Glaza P, Gieldon A, et al. Structural insights into the activation mechanisms of human HtrA serine proteases. Arch Biochem Biophys 2017;621:6-23. http://dx.doi.org/10.1016/j.abb.2017.04.004. [DOI:10.1016/j.abb.2017.04.004]
19. Tariq F, Khan MAU, Shahzad S, Chaudhary WB, Arif A, Gharib G. Production of Remedial Proteins through Genetically Modified Bacteria. Adv Life Sci 2018;5(2):37-45. [Google Scholar]
20. Zoued A, Brunet YR, Durand E, Aschtgen M-S, Logger L, Douzi B, et al. Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta 2014;1843(8):1664-73. http://dx.doi.org/10.1016/j.bbamcr.2014.03.018. [DOI:10.1016/j.bbamcr.2014.03.018]
21. Lim J. Destabilizing single chain major histocompatibility complex class I protein for repurposed enterokinase proteolysis,2020. Sci Rep 10:1-10. [DOI:10.1038/s41598-020-71785-2]
22. Odonkor ST, Addo KK. Prevalence of multidrug-resistant Escherichia coli isolated from drinking water sources. Int J Microbiol 2018;2018:7204013. http://dx.doi.org/10.1155/2018/7204013. [DOI:10.1155/2018/7204013]
23. Melicherová K, Krahulec J, Šafránek M, Lišková V, Hopková D, Széliová D, et al. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris. Appl Microbiol Biotechnol 2017;101(5):1927-34. http://dx.doi.org/10.1007/s00253-016-7960-3. [DOI:10.1007/s00253-016-7960-3]
24. Ebrahimifard M, Forghanifard MM, Yamchi A, Zarrinpour V, Sharbatkhari M. A simple and efficient method for cytoplasmic production of human enterokinase light chain in E. coli. AMB Express 2022;12(1):160. http://dx.doi.org/10.1186/s13568-022-01504-9. [DOI:10.1186/s13568-022-01504-9]
25. Wingfield PT. Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 2015;80:6-7. [DOI:10.1002/0471140864.ps0601s80]
26. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 2008;7(1):21-39. http://dx.doi.org/10.1038/nrd2399. [DOI:10.1038/nrd2399]
27. Giuliano KA, Wachi S, Drew L, Dukovski D, Green O, Bastos C, et al. Use of a high-throughput phenotypic screening strategy to identify amplifiers, a novel pharmacological class of small molecules that exhibit functional synergy with potentiators and correctors. SLAS Discovery: Advancing Life Sciences R&D. 2018;23:111-21. [DOI:10.1177/2472555217729790]
28. Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2016;36(6):1089-98. http://dx.doi.org/10.3109/07388551.2015.1084264 [DOI:10.3109/07388551.2015.1084264]
29. Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 2012;7(5):620-34. http://dx.doi.org/10.1002/biot.201100155. [DOI:10.1002/biot.201100155]
30. Yusibov VM, Mamedov TG. Plants as an alternative system for expression of vaccine antigens. Proc ANAS 2010;65:195-200. [Google Scholar]
31. Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2017;13(4):947-61. http://dx.doi.org/10.1080/21645515.2016.1260795 [DOI:10.1080/21645515.2016.1260795]
32. Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative methods of vaccine delivery: An overview of edible and intradermal vaccines. J Immunol Res 2019;2019:8303648. http://dx.doi.org/10.1155/2019/8303648. [DOI:10.1155/2019/8303648]
33. Molineux G. The development of romiplostim for patients with immune thrombocytopenia: Romiplostim for ITP. Ann N Y Acad Sci 2011;1222(1):55-63. http://dx.doi.org/10.1111/j.1749-6632.2011.05975.x. [DOI:10.1111/j.1749-6632.2011.05975.x]
34. Koolivand D, Bashir NS, Behjatnia SA, Joozani RJ. Production of Polyclonal Antibody against Grapevine fanleaf virus Movement Protein Expressed in Escherichia coli. Plant Pathol J 2016;32(5):452-9. http://dx.doi.org/10.5423/PPJ.OA.01.2016.0031. [DOI:10.5423/PPJ.OA.01.2016.0031]
35. Raikhy G, Hallan V, Kulshrestha S, Zaidi AA. Polyclonal Antibodies to the Coat Protein of Carnation etched ring virus Expressed in Bacterial System: Production and Use in Immunodiagnosis. J Phytopathol 2007;155(10):616-22. http://dx.doi.org/10.1111/j.1439-0434.2007.01287.x. [DOI:10.1111/j.1439-0434.2007.01287.x]
36. Abdollahzadeh R, Pazhang M, Najavand S, Fallahzadeh-Mamaghani V, Amani-Ghadim AR. Screening of pectinase-producing bacteria from farmlands and optimization of enzyme production from selected strain by RSM. Folia Microbiol (Praha) 2020;65(4):705-19. http://dx.doi.org/10.1007/s12223-020-00776-7. [DOI:10.1007/s12223-020-00776-7]
37. Packiam KAR, Ramanan RN, Ooi CW, Krishnaswamy L, Tey BT. Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Appl Microbiol Biotechnol 2020;104(8):3253-66. http://dx.doi.org/10.1007/s00253-020-10454-w. [DOI:10.1007/s00253-020-10454-w]
38. Pouri S, Torkashvand F, Aghamirza Moghim Aliabadi H, Fard-Esfahani P, Golkar M, Vaziri B. Quality by design in downstream process development of romiplostim. Iran Biomed J 2022;26(6):414-25. http://dx.doi.org/10.52547/ibj.3790. [DOI:10.52547/ibj.3790]
39. Hashemzaei M, Negahdaripour M, Heidari R, Ghoshoon MB. Protein expression and purification of Romiplostim and analysis of its secretory production using an in silico investigated signal peptide in E. coli. Rep Biochem Mol Biol 2023;12(1):27-35. http://dx.doi.org/10.52547/rbmb.12.1.27. [PMID]
40. Razavipour R, Sepahi AA, Modarressi MH, Bambai B. Inhibitory role of formate dehydrogenase enzyme in the growth of BL21 industrial bacteria. New Cell Mol Biotech J 2022;12(46):65-74. [Google Scholar] []
41. Rana S, Ughade S, Kumthekar R, Bhambure R. Chromatography assisted in-vitro refolding and purification of recombinant peptibody: Recombinant Romiplostim a case study. Int J Biol Macromol 2023;249:126037. http://dx.doi.org/10.1016/j.ijbiomac.2023.126037. [DOI:10.1016/j.ijbiomac.2023.126037]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb