Volume 34, Issue 9 (12-2023)                   Studies in Medical Sciences 2023, 34(9): 552-564 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amirizadeh A, Sheikhzadeh S, Delirezh N. ANTICANCER EFFECTS OF CAFFEINE NANOEMULSIONS ON CHRONIC MYELOID LEUKEMIA. Studies in Medical Sciences 2023; 34 (9) :552-564
URL: http://umj.umsu.ac.ir/article-1-6064-en.html
Assistant Professor of Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran (Corresponding Author) , s.sheikhzadeh@urmia.ac.ir
Abstract:   (1716 Views)
Background & Aims: Caffeine, a natural substance found in coffee and tea, can have anticancer effects by reducing cell proliferation and inducing apoptosis. On the other hand, nanocarriers can be used as a suitable method for properly delivering drugs at the tumor site, protecting drugs, targeting specific organs, and high durability. This study aimed to produce caffeine nanoemulsions and evaluate its anticancer effects on leukemia cells.
Materials & Methods: In this experimental study after producing caffeine nanoemulsion and evaluating its physicochemical properties, K562 cancer cells were treated with different concentrations of these caffeine nanoemulsions and free caffeine, and then, the viability of cancer cells was determined using Neutral Red and Trypan Blue methods. The AO/PI test was also used to evaluate the rate of apoptosis and necrosis. Data were analyzed by one-way ANOVA and Tukey's test using SPSS v.16 software.
Results: The results showed that the decrease in the viability of cells treated with different concentrations of caffeine nanoemulsion and free caffeine was both concentration- and time-dependent, and caffeine nanoemulsion has more cytotoxic effects on cancer cells than free caffeine. The results also showed that caffeine nanoemulsion caused more apoptosis-type cell death in treated cancer cells.
Conclusion: The present study indicated a decrease in the viability and induction of apoptosis in K562 cells as a chronic myeloid leukemia cancer cell line after exposure to caffeine nanoemulsion, and caffeine nanoemulsion can be suggested as an adjuvant therapy along with other treatments for the treatment of chronic myeloid leukemia cancer.
Full-Text [PDF 951 kb]   (816 Downloads)    
Type of Study: Research | Subject: ایمونولوژی

References
1. Weiderpass E, Stewart BW. World cancer report. Int Agency Res Cancer 2020. [URL]
2. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003;348(6):518-27. [DOI:10.1056/NEJMoa021641] [PMID]
3. Wild C. World cancer report 2014. Wild CP, Stewart BW, editors. Geneva, Switzerland: WHO; 2014. [Google Scholar]
4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69(1):7-34. [DOI:10.3322/caac.21332] [PMID]
5. Ochi Y. Genetic landscape of chronic myeloid leukemia. Int J Hematol 2023;117(1):30-6. [DOI:10.1007/s12185-022-03510-w] [PMID]
6. Hehlmann R. Chronic Myeloid Leukemia in 2020. Hemasphere 2020;4(5):e468. [DOI:10.1097/HS9.0000000000000468] [PMID] []
7. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Csh Perspect Med 2020;10(6). [DOI:10.1101/cshperspect.a034819] [PMID] []
8. Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020;12(2):149. [DOI:10.4251/wjgo.v12.i2.149] [PMID] []
9. Osarieme ED, Modupe DT, Oluchukwu OP. The Anticancer Activity of Caffeine-A Review. Arch. Med. Res. 2019;3(5):326-42. [Google Scholar]
10. Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B 2020;185:110627. [DOI:10.1016/j.colsurfb.2019.110627] [PMID]
11. Osarieme ED, Modupe DT, Oluchukwu OP. The Anticancer Activity of Caffeine-A Review. Arch Clin Biomed Res 2019;3(5):326-42. [Google Scholar]
12. Khan F, Khan MM, Kim YM. Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol 2018;19(8):631-43. [DOI:10.2174/1389201019666180828090052] [PMID]
13. Guglielmini G. Nanostructured novel carrier for topical application. Clin Dermatol 2008;26(4):341-6. [DOI:10.1016/j.clindermatol.2008.05.004] [PMID]
14. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33(9):941-51. [DOI:10.1038/nbt.3330] [PMID] []
15. Zhang Y, Shang Z, Gao C, Du M, Xu S, Song H, et al. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS Pharm Sci Tech 2014;15(4):1000-8. [DOI:10.1208/s12249-014-0129-4] [PMID] []
16. He Z, Ma WY, Hashimoto T, Bode AM, Yang CS, Dong Z. Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res 2003;63(15):4396-401. [Google Scholar]
17. Marret S, Gressens P, Van-Maele-Fabry G, Picard J, Evrard P. Caffeine-induced disturbances of early neurogenesis in whole mouse embryo cultures. Brain Res 1997;773(1-2):213-6. [DOI:10.1016/S0006-8993(97)00938-4] [PMID]
18. Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett 2007;247(1):26-39. [DOI:10.1016/j.canlet.2006.03.032] [PMID] []
19. Ostertag F, Weiss J, and McClements D.J. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci 2012; 388(1): 95-102. [DOI:10.1016/j.jcis.2012.07.089] [PMID]
20. Al-Khedhairy, A.A.;Wahab, R. Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. Appl Sci 2022;12:901. [DOI:10.3390/app12020901]
21. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 2010;75(3):R77-87. [DOI:10.1111/j.1750-3841.2010.01561.x] [PMID]
22. Wang G, Bhoopalan V, Wang D, Wang L, Xu X. The effect of caffeine on cisplatin-induced apoptosis of lung cancer cells. Exp Hematol Oncol 2015;4:5. [DOI:10.1186/2162-3619-4-5] [PMID] []
23. Machado KL, Marinello PC, Silva TNX, Silva CFN, Luiz RC, Cecchini R, et al. Oxidative Stress in Caffeine Action on the Proliferation and Death of Human Breast Cancer Cells MCF-7 and MDA-MB-231. Nutr Cancer 2021;73(8):1378-88. [DOI:10.1080/01635581.2020.1795693] [PMID]
24. Liu JD, Song LJ, Yan DJ, Feng YY, Zang YG, Yang Y. Caffeine inhibits the growth of glioblastomas through activating the caspase-3 signaling pathway in vitro. Eur Rev Med Pharmacol Sci 2015;19(16):3080-8. [Google Scholar]
25. Tonkaboni A, Lotfibakhshaiesh N, Danesh P, Tajerian R, Ziaei H. Evaluation of Inhibitory Effects of Caffeine on Human Carcinoma Cells. Nutr Cancer 2021;73(10):1998-2002. [DOI:10.1080/01635581.2020.1819344] [PMID]
26. Karita M, Tsuchiya H, Kawahara M, Kasaoka S, Tomita K. The antitumor effect of liposome-encapsulated cisplatin on rat osteosarcoma and its enhancement by caffeine. Anticancer Res 2008;28(3A):1449-57. [Google Scholar]
27. Zahrabi NZ, Tabaie SM, Jahanshiri M. Study of Cytotoxic Effects of Caffeine- Loaded Niosomes on Human Breast Cancer Cells MCF-7. JSUMS. 2021;28(5):663-74. [Google Scholar]
28. Oh JK, Sandin S, Ström P, Löf M, Adami HO, Weiderpass E. Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer 2015;137(8):1979-89. [DOI:10.1002/ijc.29569] [PMID]
29. Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Ingvar C, Holly JM, Jernström H. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin Cancer Res. 2015 Apr 15;21(8):1877-87. [DOI:10.1158/1078-0432.CCR-14-1748] [PMID]
30. Chen P-R, Chuang Y-J. Study of Caffeine-Loaded Gelatin Nanoparticles for Treatment of Melanoma and Fibroblast Cells. Lett Appl NanoBioSci 2020:4243-4254. [DOI:10.33263/LIANBS114.42434254]
31. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S. Diverse applications of nanomedicine. ACS Nano 2017;11(3):2313-81. [DOI:10.1021/acsnano.6b06040] [PMID] []
32. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2(10):750-63. [DOI:10.1038/nrc903] [PMID]
33. Sheikhzadeh S, Delirezh N, Hobbenaghi R. Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Biomed Pharmacother 2021;142:111962. [DOI:10.1016/j.biopha.2021.111962] [PMID]
34. Sutradhar K, Amin M. Nanoemulsions: Increasing possibilities in drug delivery. Eur J Nanomed 2013;5:97-110. [DOI:10.1515/ejnm-2013-0001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb