1. Bosboom JL, Stoffers D, Wolters EC. Cognitive dysfunction and dementia in Parkinson's disease. J Neural Transm 2004;111: 1303-15. [
DOI:10.1007/s00702-004-0168-1] [
PMID]
2. Weber G, Messerschmidt J. Signal enhancement in adsorptive stripping voltammetry of Pt by forced convection during the measurement step. Analytica Chimica Acta 2005;545(2): 166-72. [
DOI:10.1016/j.aca.2005.04.082]
3. Patel AB, Jimenez-Shahed J. Profile of inhaled levodopa and its potential in the treatment of Parkinson's disease: evidence to date. Neuropsychiatr Dis Treat 2018;14: 2955. [
DOI:10.2147/NDT.S147633] [
PMID] [
PMCID]
4. Nutt JG, Wooten GF. Diagnosis and initial management of Parkinson's disease. N. Eng J Med 2005;353: 1021-7. [
DOI:10.1056/NEJMcp043908] [
PMID]
5. Jimenez-Shahed J. A review of current and novel levodopa formulations for the treatment of Parkinson's disease. Ther Deliv 2016;7: 179-91. [
DOI:10.4155/tde.15.96] [
PMID]
6. Hoehn MM. The natural history of Parkinson's disease in the pre-levodopa and post-levodopa eras. Neurol Clin 1992;10: 331-9. [
DOI:10.1016/S0733-8619(18)30213-5] [
PMID]
7. Luinstra M, Rutgers AW, Dijkstra H, Grasmeijer F, Hagedoorn P, Vogelzang JM et al. Can patients with Parkinson's disease use dry powder inhalers during off periods? PloS One 2015;10(7): e0132714. [
DOI:10.1371/journal.pone.0132714] [
PMID] [
PMCID]
8. Jimenez-Shahed J. A review of current and novel levodopa formulations for the treatment of Parkinson's disease. Ther Deliv 2016;7(3): 179-91. [
DOI:10.4155/tde.15.96] [
PMID]
9. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Controlled Release 2012;161(2): 152-63. [
DOI:10.1016/j.jconrel.2011.09.098] [
PMID]
10. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020;10(7): 1403. [
DOI:10.3390/nano10071403] [
PMID] [
PMCID]
11. De Pasquale D, Marino A, Tapeinos C, Pucci C, Rocchiccioli S, Michelucci E et al. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater Des 2020;192: 108742. [
DOI:10.1016/j.matdes.2020.108742] [
PMID] [
PMCID]
12. Ahmed R, Hashemifar SJ, Akbarzadeh H. First principles study of structural and electronic properties of different phases of boron nitride. Phys B (Amsterdam, Neth) 2007;400: 297-306. [
DOI:10.1016/j.physb.2007.08.012]
13. Mortazavifar A, Raissi H, Shahabi M. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. J Biomol Struct Dyn 2019;37(18): 4852-62. [
DOI:10.1080/07391102.2019.1567385] [
PMID]
14. Mirali M, Jafariazar Z, Mirzaei M. Loading tacrine Alzheimer's drug at the carbon nanotube: DFT approach. Lab-in-Silico 2021;2(1): 3-8. [
Google Scholar]
15. Barnes EC, Petersson GA, Montgomery JA Jr, Frisch MJ, Martin JML. Unrestricted coupled cluster and Brueckner doubles variations of W1 theory. J Chem Theory Comput 2009;5(10): 2687-93. Available from: http: //dx.doi.org/10.1021/ct900260g. [
DOI:10.1021/ct900260g] [
PMID]
16. Becke AD. Density-functional thermochemistry. I. The effect of the exchange‐only gradient correction. J Chem Phys 1992;96: 2155-60. [
DOI:10.1063/1.462066]
17. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37: 785. [
DOI:10.1103/PhysRevB.37.785] [
PMID]
18. Parr RG. Density functional theory of atoms and molecules. In: Horizons of Quantum Chemistry. Dordrecht: Springer Netherlands; 1980. p. 5-15. [
DOI:10.1007/978-94-009-9027-2_2]
19. Rezaei Sameti M, Hadian K. The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube: DFT method. Iran J Phys Res 2020;20(3): 39-49. [
DOI:10.47176/ijpr.20.3.20912]
20. Rezaei-Sameti M. The effects of SiC-doped on the NMR parameters of the armchair and zigzag models of aluminum phosphide nanotubes: A DFT study. Physica E Low Dimens. Syst. Nanostruct 2012;44: 1770-5. [
DOI:10.1016/j.physe.2011.12.016]
21. Rezaei-Sameti M, Yaghoobi S. Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput Condens Matter 2015;3: 21-9. [
DOI:10.1016/j.cocom.2015.01.001]
22. Rezaei-Sameti M. The effect of doping three Al and N atoms on the chemical shielding tensor parameters of the boron phosphide nanotubes: A DFT study. Physica B Condens Matter 2012;407: 6-22. [
DOI:10.1016/j.physb.2011.09.020]
23. Rezaei-Sameti M, E A Dadfar. Interaction between F2 gas with the pristine and 3C-doped (4, 4) armchair boron phosphide nanotubes: a DFT study. Iran J Phys Res 2015;15: 41-6. [
DOI:10.18869/acadpub.ijpr.15.3.344]
24. Hamedani S, Felegari Z. Adsorption properties and quantum molecular descriptors of the folic acid drug adsorbed onto zigzag and armchair single walled carbon nanotubes: DFT simulations. Jiegou Huaxue 2017;36: 503-10. [
Google Scholar]
25. O'boyle NM, Tenderholt AL, Langner KM. Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 2008;29: 839-45. [
DOI:10.1002/jcc.20823] [
PMID]
26. Alkhateeb EM, Elbarbary AA. A Theoretical Study of Hydrogen Adsorption on Surface Nanocone Materials. Curr Sci Int 2018;7: 370-5. [
Google Scholar]
27. Weinhold F, Glendening ED. NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 2001; 53706. [
Google Scholar]
28. Hamedani S, Hamedani E. Boron nitride nanotubes as novel vectors for drug delivery of amino acids: a first principles simulation. Jiegou Huaxue 2017;9: 1562-67. [
URL]
29. Fukui K. Theory of Orientation. New York: Springer-Verlag; 1975. [
URL]
30. Zhou Z, Parr RG. Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 1990;112: 5720-4. [
DOI:10.1021/ja00171a007]
31. Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 2004;84(14): 2527-9. [
DOI:10.1063/1.1691189]
32. Chen Y, Zou J, Campbell SJ, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 2004;84(13): 2430-2. [
DOI:10.1063/1.1667278]
33. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 2009;4(1): 8-10. [
DOI:10.1016/j.nantod.2008.09.001]
34. Blasé X, Rubio A, Louie SG, Cohen ML. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhys Lett 1994;28(5): 335-40. [
DOI:10.1209/0295-5075/28/5/007]
35. Biegler-König F, Schönbohm J, Bayles D. AIM2000-A program to analyze and visualize atoms. University of Applied Science, Bielefeld. 2001. [
Google Scholar]
36. Runtz GR, Bader RF, Messer RR. Definition of bond paths and bond directions in terms of the molecular charge distribution. Can J Chem 1977;55(16): 3040-5. [
DOI:10.1139/v77-422]
37. Keith TA, Bader RF, Aray Y. Structural homeomorphism between the electron density and the virial field. Int J Quantum Chem 1996;57(2): 183-98.
https://doi.org/10.1002/(SICI)1097-461X(1996)57:2<183::AID-QUA4>3.0.CO;2-U [
DOI:10.1002/(SICI)1097-461X(1996)57:23.0.CO;2-U]
38. Ciofani G, Raffa V, Menciassi A, Dario P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosci Nanotechnol 2008;8(3): 6223-31. [
DOI:10.1166/jnn.2008.18375] [
PMID]
39. Ricotti L, Fujie T, Vazao H, Ciofani G, Marotta R, Brescia R et al. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS One 2013;8(8): e71707. [
DOI:10.1371/journal.pone.0071707] [
PMID] [
PMCID]
40. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine- coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008;101(4): 850-8. [
DOI:10.1002/bit.21952] [
PMID]
41. Turcoa SD, Ciofanib G, Cappelloc V, Gemmic M, Cervellia T, Saponaroa C et al. Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces 2013;111: 142-9. [
DOI:10.1016/j.colsurfb.2013.05.031] [
PMID]
42. Ciofania G, Dantib S, Nitti S, Mazzolaia B, MattoliaV, Giorgid M. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation. Int J Pharm 2013;444(1-2): 85- 8. [
DOI:10.1016/j.ijpharm.2013.01.037] [
PMID]
43. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 2009;131(3): 890-1. [
DOI:10.1021/ja807334b] [
PMID] [
PMCID]
44. Ciofania G, Raffaa V, Menciassia A, Cuschieria A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 2009;4: 8-10. [
DOI:10.1016/j.nantod.2008.09.001]
45. Raissi H, Mollania F. Immunosuppressive agent leflunomide: A SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6, 0) carbon and boron nitride nanotubes as controlled drug delivery devices. Eur J Pharm Sci 2014;56: 37-54. [
DOI:10.1016/j.ejps.2014.02.006] [
PMID]
46. Vessally E, Esrafili MD, Nurazar R, Nematollahi P, Bekhradnia A. A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Str Chem 2017;28: 735-48. [
DOI:10.1007/s11224-016-0858-y]
47. Azarakhshi S, Shahab Sh, Kaviani S, Investigation of Adsorption of Sulfanilamide Drug on Surfaces of the B12N12 and Al12N12 Fullerenes: A DFT Study. Lett Org Chem 2021;18: 1-16. [
DOI:10.2174/15701786MTEwmNjU52]