Volume 33, Issue 10 (January 2023)                   Studies in Medical Sciences 2023, 33(10): 696-707 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5908-en.html
Assistant professor, Department of Basic science, Islamic Azad University, Abhar branch, Abhar, Iran (Corresponding Author) , sh_hamedani2004@yahoo.com
Abstract:   (196 Views)
Background & Aims: The overall goal of utilizing nanotubes in drug delivery is to treat a disease effectively with minimum side effects and control the drug release rate. With common methods of taking the medication, such as orally and intravenously, the drug is distributed throughout the body, and the whole body is affected by the drug, and adverse side effects occur. With the development of new methods of drug delivery, maximum effectiveness can be achieved without harming other tissues. In this research, considering the importance of Levodopa as the first line of treatment for Parkinson's disease, the interaction of this drug on boron nitride nanotubes (BNNTs) as a carrier and the possibility of forming a stable complex between them was investigated.
Materials & Methods: In the present thermodynamic study, the adsorption of Levodopa on boron nitride nanotubes was investigated using density functional theory (DFT). B3LYP/6-31G(d) method and basis set was used to optimize the structure of nanoboron nitride and Levodopa drug. The interaction energy was calculated in order to determine the stability of drug adsorption on boron nitride nanotubes.
Results: The amount of absorpted energy and enthalpy change were negative and so the absorption process was exothermic and thermodynamically favorable. The results of Natural Bonding Orbital (NBO) theory calculations showed that Levodopa has the role of electron donor and boronitride nanotube has the role of electron acceptor, which has changed the stability energy of the bonds in the nanotube. The same effect was also proved by molecular electrostatic potential. Analysis of the results obtained from the atom-in-molecule theory (AIM) revealed the partial covalent nature of the levodopa-nanotube complex.
Conclusion: The results of the study of adsorption energy, thermodynamic functions, structural parameters, AIM parameters, and NBO analysis showed that the drug absorption process was favorable and considering the possibility of forming a stable complex, bornitride nanotubes are expected to be suitable carriers for delivering Levodopa to target cells.
Full-Text [PDF 1090 kb]   (121 Downloads)    
Type of Study: Research | Subject: داروسازی

1. Bosboom JL, Stoffers D, Wolters EC. Cognitive dysfunction and dementia in Parkinson's disease. J Neural Transm 2004;111: 1303-15. [DOI:10.1007/s00702-004-0168-1] [PMID]
2. Weber G, Messerschmidt J. Signal enhancement in adsorptive stripping voltammetry of Pt by forced convection during the measurement step. Analytica Chimica Acta 2005;545(2): 166-72. [DOI:10.1016/j.aca.2005.04.082]
3. Patel AB, Jimenez-Shahed J. Profile of inhaled levodopa and its potential in the treatment of Parkinson's disease: evidence to date. Neuropsychiatr Dis Treat 2018;14: 2955. [DOI:10.2147/NDT.S147633] [PMID] [PMCID]
4. Nutt JG, Wooten GF. Diagnosis and initial management of Parkinson's disease. N. Eng J Med 2005;353: 1021-7. [DOI:10.1056/NEJMcp043908] [PMID]
5. Jimenez-Shahed J. A review of current and novel levodopa formulations for the treatment of Parkinson's disease. Ther Deliv 2016;7: 179-91. [DOI:10.4155/tde.15.96] [PMID]
6. Hoehn MM. The natural history of Parkinson's disease in the pre-levodopa and post-levodopa eras. Neurol Clin 1992;10: 331-9. [DOI:10.1016/S0733-8619(18)30213-5] [PMID]
7. Luinstra M, Rutgers AW, Dijkstra H, Grasmeijer F, Hagedoorn P, Vogelzang JM et al. Can patients with Parkinson's disease use dry powder inhalers during off periods? PloS One 2015;10(7): e0132714. [DOI:10.1371/journal.pone.0132714] [PMID] [PMCID]
8. Jimenez-Shahed J. A review of current and novel levodopa formulations for the treatment of Parkinson's disease. Ther Deliv 2016;7(3): 179-91. [DOI:10.4155/tde.15.96] [PMID]
9. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Controlled Release 2012;161(2): 152-63. [DOI:10.1016/j.jconrel.2011.09.098] [PMID]
10. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020;10(7): 1403. [DOI:10.3390/nano10071403] [PMID] [PMCID]
11. De Pasquale D, Marino A, Tapeinos C, Pucci C, Rocchiccioli S, Michelucci E et al. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater Des 2020;192: 108742. [DOI:10.1016/j.matdes.2020.108742] [PMID] [PMCID]
12. Ahmed R, Hashemifar SJ, Akbarzadeh H. First principles study of structural and electronic properties of different phases of boron nitride. Phys B (Amsterdam, Neth) 2007;400: 297-306. [DOI:10.1016/j.physb.2007.08.012]
13. Mortazavifar A, Raissi H, Shahabi M. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. J Biomol Struct Dyn 2019;37(18): 4852-62. [DOI:10.1080/07391102.2019.1567385] [PMID]
14. Mirali M, Jafariazar Z, Mirzaei M. Loading tacrine Alzheimer's drug at the carbon nanotube: DFT approach. Lab-in-Silico 2021;2(1): 3-8. [Google Scholar]
15. Barnes EC, Petersson GA, Montgomery JA Jr, Frisch MJ, Martin JML. Unrestricted coupled cluster and Brueckner doubles variations of W1 theory. J Chem Theory Comput 2009;5(10): 2687-93. Available from: http: //dx.doi.org/10.1021/ct900260g. [DOI:10.1021/ct900260g] [PMID]
16. Becke AD. Density-functional thermochemistry. I. The effect of the exchange‐only gradient correction. J Chem Phys 1992;96: 2155-60. [DOI:10.1063/1.462066]
17. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37: 785. [DOI:10.1103/PhysRevB.37.785] [PMID]
18. Parr RG. Density functional theory of atoms and molecules. In: Horizons of Quantum Chemistry. Dordrecht: Springer Netherlands; 1980. p. 5-15. [DOI:10.1007/978-94-009-9027-2_2]
19. Rezaei Sameti M, Hadian K. The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube: DFT method. Iran J Phys Res 2020;20(3): 39-49. [DOI:10.47176/ijpr.20.3.20912]
20. Rezaei-Sameti M. The effects of SiC-doped on the NMR parameters of the armchair and zigzag models of aluminum phosphide nanotubes: A DFT study. Physica E Low Dimens. Syst. Nanostruct 2012;44: 1770-5. [DOI:10.1016/j.physe.2011.12.016]
21. Rezaei-Sameti M, Yaghoobi S. Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput Condens Matter 2015;3: 21-9. [DOI:10.1016/j.cocom.2015.01.001]
22. Rezaei-Sameti M. The effect of doping three Al and N atoms on the chemical shielding tensor parameters of the boron phosphide nanotubes: A DFT study. Physica B Condens Matter 2012;407: 6-22. [DOI:10.1016/j.physb.2011.09.020]
23. Rezaei-Sameti M, E A Dadfar. Interaction between F2 gas with the pristine and 3C-doped (4, 4) armchair boron phosphide nanotubes: a DFT study. Iran J Phys Res 2015;15: 41-6. [DOI:10.18869/acadpub.ijpr.15.3.344]
24. Hamedani S, Felegari Z. Adsorption properties and quantum molecular descriptors of the folic acid drug adsorbed onto zigzag and armchair single walled carbon nanotubes: DFT simulations. Jiegou Huaxue 2017;36: 503-10. [Google Scholar]
25. O'boyle NM, Tenderholt AL, Langner KM. Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 2008;29: 839-45. [DOI:10.1002/jcc.20823] [PMID]
26. Alkhateeb EM, Elbarbary AA. A Theoretical Study of Hydrogen Adsorption on Surface Nanocone Materials. Curr Sci Int 2018;7: 370-5. [Google Scholar]
27. Weinhold F, Glendening ED. NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 2001; 53706. [Google Scholar]
28. Hamedani S, Hamedani E. Boron nitride nanotubes as novel vectors for drug delivery of amino acids: a first principles simulation. Jiegou Huaxue 2017;9: 1562-67. [URL]
29. Fukui K. Theory of Orientation. New York: Springer-Verlag; 1975. [URL]
30. Zhou Z, Parr RG. Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 1990;112: 5720-4. [DOI:10.1021/ja00171a007]
31. Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 2004;84(14): 2527-9. [DOI:10.1063/1.1691189]
32. Chen Y, Zou J, Campbell SJ, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 2004;84(13): 2430-2. [DOI:10.1063/1.1667278]
33. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 2009;4(1): 8-10. [DOI:10.1016/j.nantod.2008.09.001]
34. Blasé X, Rubio A, Louie SG, Cohen ML. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhys Lett 1994;28(5): 335-40. [DOI:10.1209/0295-5075/28/5/007]
35. Biegler-König F, Schönbohm J, Bayles D. AIM2000-A program to analyze and visualize atoms. University of Applied Science, Bielefeld. 2001. [Google Scholar]
36. Runtz GR, Bader RF, Messer RR. Definition of bond paths and bond directions in terms of the molecular charge distribution. Can J Chem 1977;55(16): 3040-5. [DOI:10.1139/v77-422]
37. Keith TA, Bader RF, Aray Y. Structural homeomorphism between the electron density and the virial field. Int J Quantum Chem 1996;57(2): 183-98. https://doi.org/10.1002/(SICI)1097-461X(1996)57:2<183::AID-QUA4>3.0.CO;2-U [DOI:10.1002/(SICI)1097-461X(1996)57:23.0.CO;2-U]
38. Ciofani G, Raffa V, Menciassi A, Dario P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosci Nanotechnol 2008;8(3): 6223-31. [DOI:10.1166/jnn.2008.18375] [PMID]
39. Ricotti L, Fujie T, Vazao H, Ciofani G, Marotta R, Brescia R et al. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS One 2013;8(8): e71707. [DOI:10.1371/journal.pone.0071707] [PMID] [PMCID]
40. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine- coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008;101(4): 850-8. [DOI:10.1002/bit.21952] [PMID]
41. Turcoa SD, Ciofanib G, Cappelloc V, Gemmic M, Cervellia T, Saponaroa C et al. Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces 2013;111: 142-9. [DOI:10.1016/j.colsurfb.2013.05.031] [PMID]
42. Ciofania G, Dantib S, Nitti S, Mazzolaia B, MattoliaV, Giorgid M. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation. Int J Pharm 2013;444(1-2): 85- 8. [DOI:10.1016/j.ijpharm.2013.01.037] [PMID]
43. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 2009;131(3): 890-1. [DOI:10.1021/ja807334b] [PMID] [PMCID]
44. Ciofania G, Raffaa V, Menciassia A, Cuschieria A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 2009;4: 8-10. [DOI:10.1016/j.nantod.2008.09.001]
45. Raissi H, Mollania F. Immunosuppressive agent leflunomide: A SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6, 0) carbon and boron nitride nanotubes as controlled drug delivery devices. Eur J Pharm Sci 2014;56: 37-54. [DOI:10.1016/j.ejps.2014.02.006] [PMID]
46. Vessally E, Esrafili MD, Nurazar R, Nematollahi P, Bekhradnia A. A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Str Chem 2017;28: 735-48. [DOI:10.1007/s11224-016-0858-y]
47. Azarakhshi S, Shahab Sh, Kaviani S, Investigation of Adsorption of Sulfanilamide Drug on Surfaces of the B12N12 and Al12N12 Fullerenes: A DFT Study. Lett Org Chem 2021;18: 1-16. [DOI:10.2174/15701786MTEwmNjU52]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb