Volume 33, Issue 12 (March 2023)                   Studies in Medical Sciences 2023, 33(12): 823-838 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasani M, Azadbar A. Comparison of Copper-61 Radioisotop Production Yield via Reactions of 64Zn(p,α)61Cu, natZn(p,x)61Cu, 61Ni(p,n)61Cu, and natNi(p,x)61Cu in Hospital Cyclotron using TALYS, EMPIRE, and MCNPX Nuclear Codes. Studies in Medical Sciences 2023; 33 (12) :823-838
URL: http://umj.umsu.ac.ir/article-1-5874-en.html
Assistant Professor, Department of Nuclear Engineering, Faculty of Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran (Corresponding Author) , arash_azadbar@yahoo.com
Abstract:   (833 Views)
Background & Aims: Copper-61 (61Cu) is a radioisotope with a half-life of 3.33 hours which decays to nickel-61 isotope byβ+  emission (61%) or electron capture (39%). This radioisotope can be used in the evaluation of the blood supply of the heart and low-oxygen cancer tissues imaging with PET. 61Cu is mainly produced by bombarding zinc (Zn), nickel (Ni) and cobalt (Co) targets in medium cyclotrons. The aim of this study was to investigate the 61Cu production yield via the reactions of 64Zn(p,α)61Cu, natZn(p,x)61Cu, 61Ni(p,n)61Cu, and natNi(p,x)61Cu in hospital cyclotrons.
Materials & Methods: In this experimental study, the excitation functions of these reactions were calculated by TALYS-1/96 and EMPIRE-3-2-2 codes, and the best energy with highest reaction cross-section and lowest impurity was determined. The stopping power and target thickness at the selected energy were calculated by SRIM-2013 code. 61Cu production yield was obtained by integrating the production yield formula in MATLAB environment, and compared with the results of MCNPX-2/6 simulation and experimental works.
Results: The maximum yield of the TALYS code for 64Zn(p,α)61Cu, natZn(p,x)61Cu, 61Ni(p,n)61Cu, and natNi(p,x)61Cu at 14, 14, 9 and 20 MeV were 113/29, 55/07, 498/51 and 46/51 MBq/µAh, respectively. The maximum yield of the EMPIRE code for 64Zn(p,α)61Cu and 61Ni(p,n)61Cu at 14 and 9 MeV were 183/24 and 497/21 MBq/µAh, respectively. The maximum yield of MCNPX code for 64Zn(p,α)61Cu and 61Ni(p,n)61Cu at 14 and 9 MeV were 90/73 and 470/26 MBq/µAh, respectively. The maximum experimental yield of 64Zn(p,α)61Cu and 61Ni(p,n)61Cu at 14 and 9 MeV were 155 and 461/32 MBq/µAh, respectively.
Conclusion: It could be concluded from the comparison of simulation and experimental results that these results are in concurrence with 61Ni(p,n)61Cu at 9 MeV, and this reaction in this energy is the best reaction for producing 61Cu in hospital cyclotrons.
Full-Text [PDF 1195 kb]   (595 Downloads)    
Type of Study: Research | Subject: فیزیک پزشکی

1. Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. European journal of nuclear medicine and molecular imaging. 2005;32:1473-80. [DOI:10.1007/s00259-005-1906-9] [PMID]
2. Rowshanfarzad P, Sabet M, Jalilian AR, Kamalidehghan M. An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron. Appl Radiat Isot 2006;64(12):1563-73. [DOI:10.1016/j.apradiso.2005.11.012] [PMID]
3. Laforest R, Dehdashti F, Lewis JS, Schwarz SW. Dosimetry of 60/61/62/64 Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 2005;32:764-70. [DOI:10.1007/s00259-004-1756-x] [PMID]
4. Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E. Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 2012;25:1089-112. [DOI:10.1007/s10534-012-9578-y] [PMID] [PMCID]
5. Cohen BL, Newman E. (p, pn) and (p, 2 n) Cross Sections in Medium Weight Elements. Phys Rev 1955;99(3):718. [DOI:10.1103/PhysRev.99.718]
6. Cumming J. Decay of 61Zn. Phys Rev 1959;114(6):1600-4. [DOI:10.1103/PhysRev.114.1600]
7. Williams DC, Irvine Jr JW. Nuclear Excitation Functions and Thick-Target Yields: Zn+ d and Ar 40 (d, α). Phys Rev 1963;130(1):265. [DOI:10.1103/PhysRev.130.265]
8. Bryant E, Cochran D, Knight J. Excitation Functions of Reactions of 7-to 24-MeV He 3 Ions with Cu 63 and Cu 65. Phys Rev 1963;130(4):1512. [DOI:10.1103/PhysRev.130.1512]
9. Cogneau M, Gilly L, Cara J. Absolute cross sections and excitation functions for deuteron-induced reactions on the nickel isotopes between 2 and 12 MeV. Nucl Phys A 1967;99(4):686-94. [DOI:10.1016/0375-9474(67)90379-X]
10. Williams I, Fulmer C. Excitation functions for radioactive isotopes produced by protons below 60 MeV on Al, Fe, and Cu. Phys Rev 1967;162(4):1055. [DOI:10.1103/PhysRev.162.1055]
11. Fulmer C, Williams I. Excitation functions for radioactive nucleides produced by deuteron-induced reactions in copper. Nucl Phys A 1970;155(1):40-8. [DOI:10.1016/0375-9474(70)90077-1]
12. Tanaka S, Furukawa M, Chiba M. Nuclear reactions of nickel with protons up to 56 MeV. J Inorg Nucl Chem 1972;34(8):2419-26. [DOI:10.1016/0022-1902(72)80187-8]
13. Homma Y, Murakami Y. Production of 61Cu by α-and 3He bombardments on cobalt target. Chem Lett 1976;5(5):397-400. [DOI:10.1246/cl.1976.397]
14. Muramatsu H, Shirai E, Nakahara H, Murakami Y. Alpha particle bombardment of natural nickel target for the production of 61Cu. Int J App Radiation Isotopes 1978;29(11):611-4. [DOI:10.1016/0020-708X(78)90094-7]
15. Tolmachev V, Lundqvist H, Einarsson L. Production of 61Cu from a natural nickel target. Appl Radiat Isot 1998;49(1-2):79-81. [DOI:10.1016/S0969-8043(97)00235-2] [PMID]
16. Szelecsényi F, Suzuki K, Kovács Z, Takei M, Okada K. Production possibility of 60, 61, 62Cu radioisotopes by alpha induced reactions on cobalt for PET studies. Nucl Instrum Methods Phys Res B 2002;187(2):153-63. [DOI:10.1016/S0168-583X(01)00923-5]
17. Cohen B, Newman E, Charpie R, Handley T. (p, pn) and (p, α n) Excitation Functions. Phys Rev 1954;94(3):620. [DOI:10.1103/PhysRev.94.620]
18. Levkovski V. Cross sections of medium mass nuclide activation (A= 40-100) by medium energy protons and alpha-particles (E= 10-50 MeV). Inter-Vesi, Moscow, USSR. 1991.
19. Gyürky G, Fülöp Z, Halász Z, Kiss G, Szücs T. Direct study of the α-nucleus optical potential at astrophysical energies using the Zn 64 (p, α) Cu 61 reaction. Phys Rev C 2014;90(5):052801. [DOI:10.1103/PhysRevC.90.052801]
20. Uddin M, Khandaker M, Kim K, Lee Y, Kim G. Excitation functions of the proton induced nuclear reactions on natZn up to 40 MeV. Nucl Instrum Methods Phys Res B 2007;258(2):313-20. [DOI:10.1016/j.nimb.2007.02.089]
21. Asad AH, Chan S, Morandeau L, Cryer D, Smith SV, Price RI. Excitation functions of natZn (p, x) nuclear reactions with proton beam energy below 18 MeV. Appl Radiat Isot 2014;94:67-71. [DOI:10.1016/j.apradiso.2014.07.008] [PMID]
22. Szelecsényi F, Blessing G, Qaim S. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: Possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 1993;44(3):575-80. [DOI:10.1016/0969-8043(93)90172-7]
23. Singh B, Sharma MK, Musthafa M, Bhardwaj H, Prasad R. A study of pre-equilibrium emission in some proton-and alpha-induced reactions. Nucl Instrum Methods Phys Res A 2006;562(2):717-20. [DOI:10.1016/j.nima.2006.02.030]
24. Aslam M, Qaim SM. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl Radiat Isot 2014;89:65-73. [DOI:10.1016/j.apradiso.2014.02.007] [PMID]
25. Tingwell CIW, Hansper VY, Tims SG, Scott AF, Sargood DG. Cross sections of proton induced reactions on 61Ni. Nucl Phys A 1988;480(1):162-74. Available from: http://dx.doi.org/10.1016/0375-9474(88)90390-9 [DOI:10.1016/0375-9474(88)90390-9]
26. Antropov A, Gusev V, Zhuravlev Y, Zarubin P, Kolozhvari A, Smirnov A. Total cross sections of (p, n) reaction on the nuclei of isotopes nickel and zink at E (p) ¼5-6. MeV. Bull Russ Acad Sci: Phys 1992;56:1829.
27. Al Saleh F, Al Mugren KS, Azzam A. Excitation functions of (p, x) reactions on natural nickel between proton energies of 2.7 and 27.5 MeV. Appl Radiat Isot 2007;65(1):104-13. [DOI:10.1016/j.apradiso.2006.06.013] [PMID]
28. Adel D, Mohamed GY, Yousef Z, Abd El Wahab M, Ditroi F, Takács S, et al. Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl Radiat Isot 2020;159:109094. [DOI:10.1016/j.apradiso.2020.109094] [PMID]
29. Amjed N, Tárkányi F, Hermanne A, Ditroi F, Takacs S, Hussain M. Activation cross-sections of proton induced reactions on natural Ni up to 65 MeV. Appl Radiat Isot 2014;92:73-84. [DOI:10.1016/j.apradiso.2014.06.008] [PMID]
30. Hermanne A, Rebeles RA, Tárkányi F, Takacs S. Excitation functions of proton induced reactions on natOs up to 65 MeV: Experiments and comparison with results from theoretical codes. Nucl Instrum Methods Phys Res B 2015;345:58-68. [DOI:10.1016/j.nimb.2014.12.051]
31. Uddin MS, Chakraborty AK, Spellerberg S, Shariff MA, Das S, Rashid MA, et al. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochimica Acta 2016;104(5):305-14. [DOI:10.1515/ract-2015-2527]
32. Feghhi SA, Gholamzadeh Z, Alipoor Z, Zali A, Joharifard M, Aref M, et al. A benchmark study on uncertainty of ALICE ASH 1.0, TALYS 1.0 and MCNPX 2.6 codes to estimate production yield of accelerator-based radioisotopes. Pramana 2013;81:87-101. [DOI:10.1007/s12043-013-0554-z]
33. Tárkányi F, Ignatyuk A, Hermanne A, Capote R, Carlson B, Engle JW, et al. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J Radioanal Nucl Chem 2019;319:533-666. https://doi.org/10.1007/s10967-018-6380-5 [DOI:10.1007/s10967-018-6142-4]
34. Aslam M, Qaim S. Nuclear model analysis of excitation functions of proton and deuteron induced reactions on 64Zn and 3He-and α-particle induced reactions on 59Co leading to the formation of copper-61: Comparison of major production routes. Appl Radiat Isot 2014;94:131-40. [DOI:10.1016/j.apradiso.2014.08.001] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb