1. Joloudari JH, Saadatfar H, Dehzangi A, Shamshirband S. Computer-aided decision-making for predicting liver disease using PSO-based optimized SVM with feature selection. Inform Med Unlocked 2019; 17:100255. [
DOI:10.1016/j.imu.2019.100255]
2. Decharatanachart P, Chaiteerakij R,Tiyarattanachai T, Treeprasertsuk S. Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterol 2021;21(1):1-16. [
DOI:10.1186/s12876-020-01585-5] [
PMID] [
PMCID]
3. Devikanniga D, Ramu A, Haldorai A. Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithmEAI Endorsed Trans Energy Web 2020;7(29):1-10. [
Google Scholar]
4. Fathi M, Nemati M, Mohammadi SM, Abbasi-Kesbi R. A machine learning approach based on SVM for classification of liver diseases. Biomed Eng - Appl Basis Commun 2020;32(03):1-9. [
DOI:10.4015/S1016237220500180]
5. Harafani H, Suryani I, Ispandi, Lutfiyana N. Neural network parameters optimization with genetic algorithm to improve liver disease estimation. J Phys Conf Ser 2020;1641(1). [
DOI:10.1088/1742-6596/1641/1/012034]
6. Kumar P, Thakur RS. Liver disorder detection using variable- neighbor weighted fuzzy K nearest neighbor approach. Multimed. Tools Appl 2021;80(11):16515-35. [
DOI:10.1007/s11042-019-07978-3]
7. Kuzhippallil MA, Joseph C, Kannan A. Comparative Analysis of Machine Learning Techniques for Indian Liver Disease Patients. 2020 6th Int Conf Adv Comput Commun Syst (ICACCS) 2020;778-82. [
DOI:10.1109/ICACCS48705.2020.9074368]
8. Sharma S, Mehrotra D. Two-Stage CBR Based Healthcare Model to Diagnose Liver Disease. Int J Comput Digit Syst 2021;10:1-8. [
DOI:10.12785/ijcds/100171]
9. Spann A, Yasodhara A, Kang J, Watt K, Wang B, Goldenberg A, et al. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology 2020;71(3):1093-105. [
DOI:10.1002/hep.31103] [
PMID]
10. Kumar P, Thakur RS. An approach using fuzzy sets and boosting techniques to predict liver disease. Comput Mater Contin 2021;68(3):3513-29. [
DOI:10.32604/cmc.2021.016957]
11. Tanwar N, Rahman KF. Machine learning in liver disease diagnosis: Current progress and future opportunities. IOP Conf Ser Mater Sci Eng 2021;1022(1):1-18. [
DOI:10.1088/1757-899X/1022/1/012029]
12. Mabrouk AG, Hamdy A, Abdelaal HM, Elkattan AG, Elshourbagy MM, Alansary HAY. Automatic Classification Algorithm for Diffused Liver Diseases Based on Ultrasound Images. IEEE Access 2021; 9:5760-8. [
DOI:10.1109/ACCESS.2021.3049341]
13. Tahmasbi H, Jalali M, Shakeri H. An Expert System for Heart Disease Diagnosis Based on Evidence Combination in Data Mining. J Health Biomed Inf 2017;3(4):251-8. (Persian) [
Google Scholar]
14. Khan RA, Luo Y, Wu FX. Machine learning based liver disease diagnosis: A systematic review. Neurocomputing 2022;468:492-509. [
DOI:10.1016/j.neucom.2021.08.138]
15. Tang C, Ji J, Tang Y, Gao S, Tang Z, Todo Y. A novel machine learning technique for computer-aided diagnosis. Eng Appl Artif Intell 2020;92. [
DOI:10.1016/j.engappai.2020.103627]
16. Kaur A, Kumar A. Prediction of Liver Disorders Using Simple Logistic Technique of Machine Learning. In Applications of Machine Intelligence in Engineering 2022 ;81-92. [
DOI:10.1201/9781003269793-10] [
PMID]
17. Tahmasbi H, Amoozgar M, Adine H. Replacement of missing values and its effect on the classification accuracy in medical data mining. J Health Biomed Inf 2015;2(1):24-32. (Persian) [
Google Scholar]
18. Wang YC, Cheng CH. A multiple combined method for rebalancing medical data with class imbalances. Comput Biol Med 2021;134:104527. [
DOI:10.1016/j.compbiomed.2021.104527] [
PMID]
19. Zhao K, Li L, Chen Z, Sun R, Yuan G, Li J. A survey: Optimization and applications of evidence fusion algorithm based on Dempster-Shafer theory. Appl Soft Comput 2022:109075. [
DOI:10.1016/j.asoc.2022.109075]
20. UCI Machine Learning Repository: Data Sets. (cited 2022 May 25). Available from: https://archive.ics.uci.edu/ml/datasets.php [
URL]
21. Ghosh M, Mohsin Sarker Raihan M, Raihan M, Akter L, Kumar Bairagi A, S. Alshamrani S, et al. A Comparative Analysis of Machine Learning Algorithms to Predict Liver Disease. Intell Autom Soft Comput 2021;30(3):917-28. [
DOI:10.32604/iasc.2021.017989]
22. Sreejith S, Khanna Nehemiah H, Kannan A. Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection. Comput Biol Med 2020;126:103991. [
DOI:10.1016/j.compbiomed.2020.103991] [
PMID]
23. Li X, Chen X, Yuan Z. Applicable model of liver disease detection based on the improved CART-AdaBoost algorithm. In: IEEE InternationalConference on Artificial Intelligence and Computer Applications (ICAICA). IEEE 2021; 1177-81. [
DOI:10.1109/ICAICA52286.2021.9498046]
24. Murugesan S, Bhuvaneswaran RS, Khanna Nehemiah H, Keerthana Sankari S, Nancy Jane Y. Feature Selection and Classification of Clinical Datasets Using Bioinspired Algorithms and Super Learner. Comput Math Methods Med 2021:6662420. [
DOI:10.1155/2021/6662420] [
PMID] [
PMCID]
25. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23(19):2507-17. [
DOI:10.1093/bioinformatics/btm344] [
PMID]
26. Weka 3 - Data Mining with Open Source MachineLearning Software in Java. (cited 2022 May 29). Available from: https://www.cs.waikato.ac.nz/ml/weka/ [
URL]
27. Wu C-C, Yeh W-C, Hsu W-D, Islam MM, Nguyen PAA, Poly TN, et al. Prediction of fatty liver disease using machine learning algorithms. Comput Methods Programs Biomed 2019;170:23-9. [
DOI:10.1016/j.cmpb.2018.12.032] [
PMID]
28. Abdar M, Yen NY, Hung JCS. Improving the Diagnosis of Liver Disease Using Multilayer Perceptron Neural Network and Boosted Decision Trees. J Med Biol Eng 2018;38(6):953- [
DOI:10.1007/s40846-017-0360-z]