Volume 32, Issue 6 (September 2021)                   Studies in Medical Sciences 2021, 32(6): 468-476 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shabestarian H, Homayouni Tabrizi M, Eshaghi A. Evaluation of Antioxidant and Antibacterial Effects of PLGA Nanoparticles Loaded with Rapeseed Pollen Extract. Studies in Medical Sciences 2021; 32 (6) :468-476
URL: http://umj.umsu.ac.ir/article-1-5501-en.html
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran (Corresponding author)
Abstract:   (2024 Views)
Background & Aims: In this study, the antioxidant and antibacterial capacity of PLGA nanoparticles containing rapeseed extract (RE-PNP) was investigated.
Materials & Methods: Three various methods including Disk Diffusion (DD), Minimal Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) were used to evaluate the antibacterial effects of synthesized nanoparticles against different strains of bacteria. The inhibition capacity of ABTS and DPPH free radicals was measured to evaluate the antioxidant power of RE-PNP.
Results: The results showed that the RE-PNP have the potential to inhibit DPPH radicals (IC50 = 500μg / ml) and ABTS (IC50 = 1000μg / ml). The inhibitory effect of RE-PNP on the growth of Staphylococcus aurous and Micrococcus luteus was confirmed by the growth inhibition zone 8 and 15 in the disk diffusion model.
Conclusion: According to the results, RPE-PNPs can be used as a safe, natural, and effective antibiotic for bacterial infections caused by Staphylococcus aureus and Micrococcus luteus and also, this formulation can be used due to its antioxidant effects in treatment of oxidative stress-related diseases.
Full-Text [PDF 814 kb]   (962 Downloads)    
Type of Study: Research | Subject: بیوشیمی

1. Reid KA, Jäger AK, Light ME, Mulholland DA, Van Staden J. Phytochemical and pharmacological screening of Sterculiaceae species and isolation of antibacterial compounds. J Ethnopharmacol 2005;97(2):285-91. [DOI:10.1016/j.jep.2004.11.010] [PMID]
2. Avijgan M, Saadat M, Nilfrooshzadeh MA, Hafizi M. Anti fungal effect of Echinophora platyloba extract on some common dermathophytes. J Med Plants 2006; 5(18): 10-6. [Google Scholar]
3. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, et al., Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020; 9(12): 1309. [DOI:10.3390/antiox9121309] [PMID] [PMCID]
4. El-Maati MF, Labib SM, Al-Gaby AM, Ramadan MF.Antioxidant properties of different extracts from five medicinal plants. Zag J Agric Res 2012; 39: 1-13. [Google Scholar]
5. Stagos D. Antioxidant activity of polyphenolic plant extracts. Antioxidants (Basel) 2019;9(1):19. [DOI:10.3390/antiox9010019] [PMID] [PMCID]
6. Liu X, Jia J, Jing X, Li G. Antioxidant activities of extracts from sarcocarp of Cotoneaster multiflorus. Journal of Chemistry 2018; 2018. [DOI:10.1155/2018/4619768]
7. Safari, M. and S. Ahmady-Asbchin, Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnol Biotechnol Equip 2019; 33(1): 372-8. [DOI:10.1080/13102818.2019.1577701]
8. Islam MZ, Hossain MT, Hossen F, Mukharjee SK, Sultana N, Paul SC. Evaluation of antioxidant and antibacterial activities of Crotalaria pallida stem extract. Clinical Phytoscience 2018; 4(1): 1-7. [DOI:10.1186/s40816-018-0066-y]
9. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 2010; 31(25): 6363-77. [DOI:10.1016/j.biomaterials.2010.05.005] [PMID]
10. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 2006; 17(3): 247-89. [DOI:10.1163/156856206775997322] [PMID]
11. Jagur-Grodzinski J. Biomedical application of functional polymers. Reactive & Functional Polymers 1999; 39(2): 99-138. [DOI:10.1016/S1381-5148(98)00054-6]
12. Kourmouli A, Valenti M, van Rijn E, Beaumont HJ, Kalantzi OI, Schmidt-Ott A, et al. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J Nanopart Res 2018; 20(3): 1-6. [DOI:10.1007/s11051-018-4152-3] [PMID] [PMCID]
13. Gaydos JM, Harrington BJ. Agar disk diffusion for the quality control testing of Autobac elution disks. Antimicrob Agents Chemother1982; 21(3): 516-8. [DOI:10.1128/AAC.21.3.516] [PMID] [PMCID]
14. Khatamian N, Homayouni Tabrizi M, Ardalan P. Effect Of Carum Carvi Essential Oil Nanoemulsion On Tubo Cancer Cells And L929 Normal Cells And Evaluation Of Antioxidant Activity. Stud Med Sci 2019; 30(4): 315-21. [Google Scholar]
15. Anwer MK, Jamil S, Ibnouf EO, Shakeel F. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J Oleo Sci 2014;63(4):347-54. [DOI:10.5650/jos.ess13213] [PMID]
16. Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. Biomed Res Int. 2015;2015:925631. [DOI:10.1155/2015/925631] [PMID] [PMCID]
17. Tian C, Chang Y, Zhang Z, Wang H, Xiao S, Cui C, et al. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon 2019; 5(8): e02234. [DOI:10.1016/j.heliyon.2019.e02234] [PMID] [PMCID]
18. Soumia B. Eryngium campestre L.: Polyphenolic and flavonoid compounds; Applications to health and disease. Polyphenols: Mechanisms of Action in Human Health and Disease 2018:69-79. [DOI:10.1016/B978-0-12-813006-3.00007-6]
19. Sharma S, Ghataury SK, Sarathe A, Dubey G, Parkhe G.Curcuma angustifolia Roxb,(Zingiberaceae): Ethnobotany, phytochemistry and pharmacology: A review. J Pharmacogn Phytochem 2019; 8: 1535-40. [Google Scholar]
20. Panpatil VV, Tattari S, Kota N, Nimgulkar C, Polasa K. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic. Journal of Pharmacognosy and phytochemistry 2013; 2(3): 143-18. [Google Scholar]
21. Idris NA, Yasin HM, Usman A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon 2019; 5(5): e01717. [DOI:10.1016/j.heliyon.2019.e01717] [PMID] [PMCID]
22. Oliviero M, Romilde I, Beatrice MM, Matteo V, Giovanna N, Consuelo A, et al. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem Biol Interact 2016; 256: 125-33. [DOI:10.1016/j.cbi.2016.06.024] [PMID]
23. Tzima K, Makris D, Nikiforidis CV, Mourtzinos I.Potential use of rosemary, propolis and thyme as natural food preservatives. J Nutr Health 2015; 1(6). [DOI:10.13188/2469-4185.1000002]
24. Miraj S, Kiani S. Study of pharmacological effect of Mentha pulegium: A review. Der Pharmacia Lettre 2016; 8(9): 242-5. [Google Scholar]
25. Rajić JR, Đorđević SM, Tešević V, Živković MB, Đorđević NO, Paunović DM, et al. The extract of fennel fruit as a potential natural additive in food industry. Journal of Agricultural Sciences 2018; 63(2): 205-15. [DOI:10.2298/JAS1802205R]
26. Mimica-Dukic N, Bozin B.Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr Pharm Des 2008; 14(29): 3141-50. [DOI:10.2174/138161208786404245] [PMID]
27. Fierascu RC, Georgiev MI, Fierascu I, Ungureanu C, Avramescu SM, Ortan A, et al. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L.(Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem Toxicol 2018;111:44-52. [DOI:10.1016/j.fct.2017.11.008] [PMID]
28. Luís Â, Neiva DM, Pereira H, Gominho J, Domingues F, Duarte AP. Bioassay-guided fractionation, GC-MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Industrial Crops and Products 2016; 91: 97-103. [DOI:10.1016/j.indcrop.2016.06.022]
29. Munir R, Semmar N, Farman M, Ahmad NS. An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera). Asian Pac J Trop Biomed 2017; 7(11): 1046-54. [DOI:10.1016/j.apjtb.2017.10.004]
30. Miraj S, Azizi N, Kiani S.A review of chemical components and pharmacological effects of Melissa officinalis L. Der Pharmacia Lettre 2016; 8(6): 229-37. [Google Scholar]
31. Paul D. A review on biological activities of common Mallow (Malva sylvestris L.). J Life Sci 2016;4:1-5. [Google Scholar]
32. Toledano Medina MÁ, Merinas-Amo T, Fernández-Bedmar Z, Font R, Del Río-Celestino M, Pérez-Aparicio J, et al., Physicochemical characterization and biological activities of black and white garlic: In vivo and in vitro assays. Foods 2019; 8(6):220. [DOI:10.3390/foods8060220] [PMID] [PMCID]
33. Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 2002; 65(10): 1545-60. [DOI:10.4315/0362-028X-65.10.1545] [PMID]
34. Willis S, Sunkara R, Hester F, Shackelford L, Walker LT, Verghese M. Chemopreventive and anti-inflammatory potential of select herbal teas and cinnamon in an in-vitro cell model. Food and Nutrition Sciences 2019; 10(9): 1142-56. [DOI:10.4236/fns.2019.109083]
35. Kianbakht S, Jahaniani F. Evaluation of antibacterial activity of Tribulus terrestris L. growing in Iran. Iranian Journal of Pharmacology and Therapeutics 2003; 2 (1) :22. [Google Scholar]
36. Gupta C, Garg AP, Uniyal RC, Kumari A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. Afr J Microbiol Res 2008; 2(9): 247-51. [Google Scholar]
37. Bor T, Aljaloud SO, Gyawali R, Ibrahim SA. Antimicrobials from herbs, spices, and plants. In: Fruits, vegetables, and herbs. Elsevier; 2016. p. 551-78. [DOI:10.1016/B978-0-12-802972-5.00026-3]
38. Petropoulos S, Fernandes Â, Barros L, Ciric A, Sokovic M, Ferreira ICFR. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem 2018; 245: 7-12. [DOI:10.1016/j.foodchem.2017.10.078] [PMID]
39. Zheleva-Dimitrova D, Obreshkova D, Nedialkov P.Antioxidant activity of tribulus terrestris-a natural product in infertility therapy. Int J Pharm Pharm Sci 2012; 4(4): 508-11. [Google Scholar]
40. Gulcin I, Kaya R, Goren AC, Akincioglu H, Topal M, Bingol Z, et al., Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: polyphenol contents analysis by LC-MS/MS. International Journal of Food Properties 2019; 22(1): 1511-26. [DOI:10.1080/10942912.2019.1656232]
41. Abd El Azim MH, El-Mesallamy AM, El-Gerby M, Awad A. Anti-Tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower buds (Syzygium aromaticum). J Microb Biochem Technol 2014; 10: s8-s007. [DOI:10.4172/1948-5948.S8-007]
42. Oliveira I, Valentão P, Lopes R, Andrade PB, Bento A, Pereira JA.Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem J 2009; 92(2): 129-34. [DOI:10.1016/j.microc.2009.02.006]
43. Daneshzadeh MS, Abbaspour H, Amjad L, Nafchi AM.An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. Journal of Food Measurement and Characterization 2020;14(2):708-15.. [DOI:10.1007/s11694-019-00317-y]
44. Shalaby MT, Ghanem AA, Maamon HM. Protective effect of ginger and cactus saguaro extract against cancer formation cells. Journal of Food and Dairy Sciences 2016; 7(11): 487-91. [DOI:10.21608/jfds.2016.46069]
45. Martins N, Barros L, Santos-Buelga C, Silva S, Henriques M, Ferreira IC. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem 2015; 167: 131-7. [DOI:10.1016/j.foodchem.2014.06.094] [PMID]
46. Jin KT, Lu ZB, Chen JY, Liu YY, Lan HR, Dong HY, et al., Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. Journal of Nanomaterials 2020; 2020. [DOI:10.1155/2020/9184284]
47. Hajebi S, Tabrizi MH, Moghaddam MN, Shahraki F, Yadamani S. Rapeseed flower pollen bio-green synthesized silver nanoparticles: A promising antioxidant, anticancer and antiangiogenic compound. J Biol Inorg Chem 2019; 24(3): 395-404. [DOI:10.1007/s00775-019-01655-4] [PMID]
48. Shahraki F, Tabrizi MH, Moghaddam MN, Hajebi S.Bio-green synthesis ZnO-NPs in Brassica napus pollen extract: biosynthesis, antioxidant, cytotoxicity and pro-apoptotic properties. IET Nanobiotechnology 2019; 13(5): 471-6. [DOI:10.1049/iet-nbt.2018.5164] [PMCID]
49. Nallamuthu I, Parthasarathi A, Khanum F. Thymoquinone-loaded PLGA nanoparticles: antioxidant and anti-microbial properties. International Current Pharmaceutical Journal 2013; 2(12): 202-7. [DOI:10.3329/icpj.v2i12.17017]
50. Pereira MC, Oliveira DA, Hill LE, Zambiazi RC, Borges CD, Vizzotto M, et al. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem 2018; 240: 396-404. [DOI:10.1016/j.foodchem.2017.07.144] [PMID]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb