Volume 32, Issue 6 (September 2021)                   Studies in Medical Sciences 2021, 32(6): 448-457 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ostadimoghaddam H, Nakhjavanpour N, Payandeh A, Mohammad-Reza Sedaghat M. DETERMINATION OF FACTORS ASSOCIATED WITH PERIPAPILLARY RETINAL NERVE FIBER LAYER AND MACULAR THICKNESS USING OPTICAL COHERENCE TOMOGRAPHY. Studies in Medical Sciences 2021; 32 (6) :448-457
URL: http://umj.umsu.ac.ir/article-1-5462-en.html
M.Sc. of Optometry, Department of Optometry, Zahedan University of Medical Sciences, Zahedan, Iran (Corresponding Author)
Abstract:   (2756 Views)
Background & Aims: Retinal nerve fiber layer thickness is an important factor in the early diagnosis of posterior pole dysfunctions, assessment of treatment effect, and disease progression. The aim of this study was to compare the macular and peripapillary retinal thickness between genders and among refractive error types in healthy subjects. In addition, effective determinants of the thickness were ascertained.
Materials & Methods: This cross-sectional study was conducted on 58 subjects (116 eyes) who were referred to the Toos eye clinic of Mashhad, northeast of Iran, for refractive error surgery and their caregivers in 2014. We used Optical Coherence Tomography for retinal thickness measurements.
Results: The mean age was 26.02±0.42 years. The mean±SD spherical equivalence was estimated to be -2.06 ± 0.36 dioptres, axial length was 23.89 ± 0.14 mm, average peripapillary thickness was 89.91 ± 0.94 μm, average macular thickness was 274.68 ± 1.84 μm, and overall macular volume was 9.89 ± 0.07 mm3. Multiple linear regression modeling indicated that axial length and gender had a significant effect on average macular thickness. Axial length also showed a substantial effect on average peripapillary thickness.
Conclusion: Retinal thickness measurement regardless of refractive error type could lead to bias in disease diagnosis. The results of the present study might be used to enhance the assessment precision of ocular diseases.
Full-Text [PDF 524 kb]   (844 Downloads)    
Type of Study: Research | Subject: چشم

References
1. Rollins AM, Kulkarni MD, Yazdanfar S, Ung-Arunyawee R, Izatt JA. In vivo video rate optical coherence tomography. Opt Express 1998;3(6):219-29. [DOI:10.1364/OE.3.000219] [PMID]
2. Lee K, Yang H, Kim JY, Seong GJ, Kim CY, Bae HW. Risk Factors Associated with Structural Progression in Normal-Tension Glaucoma: Intraocular Pressure, Systemic Blood Pressure, and Myopia. Invest Ophthalmol Vis Sci 2020;61(8):35 [DOI:10.1167/iovs.61.8.35] [PMID] [PMCID]
3. Tan O, Liu L, Zhang X, Morrison JC, Huang D. Glaucoma increases retinal surface contour variability as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 2016;57(9):OCT438-OCT43. [DOI:10.1167/iovs.15-18911] [PMID] [PMCID]
4. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991;254(5035):1178-81. [DOI:10.1126/science.1957169] [PMID] [PMCID]
5. Fercher AF, Roth E. Ophthalmic laser interferometry. In: Optical instrumentation for biomedical laser applications. International Society for Optics and Photonics; 1986. p. 48-51. [DOI:10.1117/12.938523]
6. Iorga RE, Moraru A, Ozturk MR, Costin D. The role of optical coherence tomography in optic neuropathies. Rom J Ophthalmol 2018;62(1):3. [DOI:10.22336/rjo.2018.2] [PMID] [PMCID]
7. Santodomingo-Rubido J, Mallen E, Gilmartin B, Wolffsohn J. A new non-contact optical device for ocular biometry. Br J Ophthalmol 2002;86(4):458-62. [DOI:10.1136/bjo.86.4.458] [PMID] [PMCID]
8. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, et al. Topography of diabetic macular edema with optical coherence tomography. J Ophthalmol 1998;105(2):360-70. [DOI:10.1016/S0161-6420(98)93601-6]
9. Byrne SF. A-scan axial eye length measurements: a handbook for IOL calculations. Grove Park Publishers; 1995. [URL]
10. Muscat S, McKay N, Parks S, Kemp E, Keating D. Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Invest Ophthalmol Vis Sci 2002;43(6):1791-5. [URL]
11. Koozekanani D, Roberts C, Katz SE, Herderick EE. Intersession repeatability of macular thickness measurements with the Humphrey 2000 OCT. Invest Ophthalmol Vis Sci 2000;41(6):1486-91. [Google Scholar]
12. Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol 2002;12(2):102-8. [DOI:10.1177/112067210201200205] [PMID]
13. Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Br J Ophthalmol 2003;87(8):960-3. [DOI:10.1136/bjo.87.8.960] [PMID] [PMCID]
14. Wong A, Chan C, Hui S. Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye 2005;19(3):292-7. [DOI:10.1038/sj.eye.6701466] [PMID]
15. Zereid FM, Osuagwu UL. Myopia and Regional Variations in Retinal Thickness in Healthy Eyes. J Ophthalmic Vis Res 2020;15(2):178. [DOI:10.18502/jovr.v15i2.6735] [PMID] [PMCID]
16. Pakravan M, Pakbin M, Aghazadeh Amiri M, Yazdani S, Yaseri M. Comparison of Peripapillary Retinal Nerve Fiber Layer Thickness Measured by Two Different Optical Coherence Tomography Devices. Bina J Ophthalmol 2013;18(4):437-43. [Google Scholar]
17. Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 2010;51(8):3913-8. [DOI:10.1167/iovs.09-4189] [PMID]
18. Jonas JB, Xu L, Wei WB, Pan Z, Yang H, Holbach L, et al. Retinal thickness and axial length. Invest Ophthalmol Vis Sci 2016;57(4):1791-7 [DOI:10.1167/iovs.15-18529] [PMID]
19. Song A-P, Wu X-Y, Wang J-R, Liu W, Sun Y, Yu T. Measurement of retinal thickness in macular region of high myopic eyes using spectral domain OCT. Int J Ophthalmol 2014;7(1):122. [Google Scholar]
20. Barella KA, Costa VP, Gonçalves Vidotti V, Silva FR, Dias M, Gomi ES. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol 2013;2013 :789129. [DOI:10.1155/2013/789129] [PMID] [PMCID]
21. Nilforushan N, Ahadi M. Optical Coherence Tomographic Measurement of Peripapillary Retinal Nerve Fiber Layer Thickness in Normal Human Eyes. Bina J Ophthalmol 2005;10(4):473-80. [Google Scholar]
22. Savini G, Carbonelli M, Barboni P. Retinal nerve fiber layer thickness measurement by Fourier-domain optical coherence tomography: a comparison between cirrus-HD OCT and RTVue in healthy eyes. J Glaucoma 2010;19(6):369-72. [DOI:10.1097/IJG.0b013e3181bdb55d] [PMID]
23. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, et al. Race-and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci 2011;52(1):625-34. [DOI:10.1167/iovs.10-5886] [PMID] [PMCID]
24. Kelty PJ, Payne JF, Trivedi RH, Kelty J, Bowie EM, Burger BM. Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Invest Ophthalmol Vis Sci 2008;49(6):2668-72. [DOI:10.1167/iovs.07-1000] [PMID]
25. Kashani AH, Zimmer-Galler IE, Shah SM, Dustin L, Do DV, Eliott D, et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am J Ophthalmol 2010;149(3):496-502. e1. [DOI:10.1016/j.ajo.2009.09.025] [PMID] [PMCID]
26. Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. J Ophthalmol 2003;110(1):190-5. [DOI:10.1016/S0161-6420(02)01296-4]
27. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. J Ophthalmol 2007;114(6):1046-52. [DOI:10.1016/j.ophtha.2006.08.046] [PMID] [PMCID]
28. Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma 2009;18(7):501. [DOI:10.1097/IJG.0b013e318193c2be] [PMID] [PMCID]
29. Lam DSC, Leung KS, Mohamed S, Chan W-m, Palanivelu MS, Cheung CYL, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci 2007;48(1):376-82. [DOI:10.1167/iovs.06-0426] [PMID]
30. Leung CK-S, Mohamed S, Leung KS, Cheung CY-L, Chan SL-w, Cheng DK-y, et al. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci 2006;47(12):5171-6. [DOI:10.1167/iovs.06-0545] [PMID]
31. Lim MC, Hoh S-T, Foster PJ, Lim T-H, Chew S-J, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46(3):974-8. [DOI:10.1167/iovs.04-0828] [PMID]
32. Evans J, Schwartz S, McHugh J, Thamby-Rajah Y, Hodgson S, Wormald R, et al. Systemic risk factors for idiopathic macular holes: a case-control study. Eye 1998;12(2):256-9. [DOI:10.1038/eye.1998.60] [PMID]
33. Zou H, Zhang X, Xu X, Yu S. Quantitative in vivo retinal thickness measurement in chinese healthy subjects with retinal thickness analyzer. Invest Ophthalmol Vis Sci 2006;47(1):341-7. [DOI:10.1167/iovs.05-0480] [PMID]
34. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol 2006;124(2):193-8. [DOI:10.1001/archopht.124.2.193] [PMID] [PMCID]
35. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 2003;23(2):177-82. [DOI:10.1097/00006982-200304000-00007] [PMID]
36. Hoh S-T, Lim MC, Seah SK, Lim AT, Chew S-J, Foster PJ, et al. Peripapillary retinal nerve fiber layer thickness variations with myopia. J Ophthalmol 2006;113(5):773-7. [DOI:10.1016/j.ophtha.2006.01.058] [PMID]
37. Garcia-Valenzuela E, Mori M, Edward DP, Shahidi M. Thickness of the peripapillary retina in healthy subjects with different degrees of ametropia. J Ophthalmol 2000;107(7):1321-7. [DOI:10.1016/S0161-6420(00)00166-4]
38. Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age. Nippon Ganka Gakkai Zasshi 2002;106(3):162-5. [DOI:10.1016/S0021-5155(02)00569-5]
39. Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 2003;87(7):899-901. [DOI:10.1136/bjo.87.7.899] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb