Volume 32, Issue 3 (June 2021)                   Studies in Medical Sciences 2021, 32(3): 213-224 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mozaffarinejad F, Nazarboland N, Sadeghihasanabadi F. Neurological Evidence for Impairment of Supervisory Attentional System in Impulsive Children. Studies in Medical Sciences 2021; 32 (3) :213-224
URL: http://umj.umsu.ac.ir/article-1-5346-en.html
Assistant Professor, Department of Psychology, Shahid Beheshti University, Tehran, Iran (Corresponding Author)
Abstract:   (2185 Views)
Background & Aims: Supervisory Attentional System (SAS) model of information processing (Norman and Shallice, 1980) explains the overall voluntary cognitive control and regulation of mental processes during novel or complex tasks. From a functional point of view, “Impulsivity” is a multidimensional concept that incorporates failure of "response inhibitory control" –a key component in SAS–and other cognition processes. Even aggressive, suicidal, and violent behaviors are associated with impulsivity and difficulty in inhibiting responses. The aim of this descriptive-comparative study was to investigate whether SAS impairments play a role in impulsive behaviors of children.
Materials & Methods: Students of 8 to 10 years old were categorized into groups of high impulsivity (1.2 SD higher than the mean (n=25)) and low impulsivity (1.2 SD higher than the mean based on the Conners' Teacher Rating Scale (CTRS-RS)). SAS performance was assessed by Continuous Performance Test (CPT), Go/No Go (GNG), and Tower of London Test (TOL).
Results: In CPT, higher commission score (p=0.025, F=5.40); in GNG, lower inhibitory control and omission (p, F=16.27; p0.016, F=6.27; p0.006, F=8.46); and in TOL, higher time test, time total, error, and lower results scores (p0.015, F=6.34; p0.027, F=5.18, p0.001, F13.49; p0.001, F12.50) were obtained by the more impulsive participants.
Conclusion: Taken together, a multivariate analysis of variance in all three tests revealed that response inhibitory control is negatively associated with high impulsivity, indicating the correlativity of SAS impairment with impulsivity. This finding introduces quantifiable means of assessing SAS impairment in impulsive children, which can help improve the diagnosis and treatment strategies of impulsivity-related disorders.
 
Full-Text [PDF 396 kb]   (793 Downloads)    
Type of Study: Research | Subject: Neuroscience

References
1. Obeso I, Robles N, Marrón EM, Redolar-Ripoll D. Dissociating the Role of the pre-SMA in Response Inhibition and Switching: A Combined Online and Offline TMS Approach. Front Hum Neurosci 2013;7:150. [DOI:10.3389/fnhum.2013.00150] [PMID] [PMCID]
2. Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci 1998;353(1377):1915-27. [DOI:10.1098/rstb.1998.0344] [PMID] [PMCID]
3. Hitch GJ, Hu Y, Allen RJ, Baddeley AD. Competition for the focus of attention in visual working memory: perceptual recency versus executive control. Ann N Y Acad Sci 2018;1424(1):64-75. [DOI:10.1111/nyas.13631] [PMID]
4. Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 2013;108:44-79. [DOI:10.1016/j.pneurobio.2013.06.005] [PMID]
5. Hofmann W, Friese M, Strack F. Impulse and Self-Control From a Dual-Systems Perspective. Perspect Psychol Sci 2009;4(2):162-76. [DOI:10.1111/j.1745-6924.2009.01116.x] [PMID]
7. Nigg JT. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. J Child Psychol Psychiatry 2017;58(4):361-83. [DOI:10.1111/jcpp.12675] [PMID] [PMCID]
8. Weidacker K, Whiteford S, Boy F, Johnston SJ. Response inhibition in the parametric go/no-go task and its relation to impulsivity and subclinical psychopathy. Q J Exp Psychol (Hove) 2017;70(3):473-87. [DOI:10.1080/17470218.2015.1135350] [PMID]
9. Hege MA, Stingl KT, Kullmann S, Schag K, Giel KE, Zipfel S, Preissl H. Attentional impulsivity in binge eating disorder modulates response inhibition performance and frontal brain networks. Int J Obes (Lond) 2015;39(2):353-60. [DOI:10.1038/ijo.2014.99] [PMID]
10. Nigg JT. Is ADHD a disinhibitory disorder?. Psychol Bull 2001;127(5):571. [DOI:10.1037/0033-2909.127.5.571] [PMID]
11. Dalley JW, Robbins TW. Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 2017;18(3):158-71. [DOI:10.1038/nrn.2017.8] [PMID]
12. Sach M, Enge S, Strobel A, Fleischhauer M. MPQ Control (versus Impulsivity) and Need for Cognition-Relationship to behavioral inhibition and corresponding ERPs in a Go/No-Go task. Pers Individ Dif 2018;121:200-5. [DOI:10.1016/j.paid.2017.04.005]
13. Castro-Meneses LJ, Johnson BW, Sowman PF. The effects of impulsivity and proactive inhibition on reactive inhibition and the go process: insights from vocal and manual stop signal tasks. Front Hum Neurosci 2015;9:529. [DOI:10.3389/fnhum.2015.00529] [PMID] [PMCID]
14. Brown MR, Benoit JR, Juhás M, Dametto E, Tse TT, MacKay M, Sen B, Carroll AM, Hodlevskyy O, Silverstone PH, Dolcos F, Dursun SM, Greenshaw AJ. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents. Front Syst Neurosci 2015;9:124. 14. Montojo CA, Congdon E, Hwang L, Jalbrzikowski M, Kushan L, Vesagas TK, Jonas RK, Ventura J, Bilder RM, Bearden CE. Neural mechanisms of response inhibition and impulsivity in 22q11.2 deletion carriers and idiopathic attention deficit hyperactivity disorder. Neuroimage Clin 2015;9:310-21. 15 Dekker MR, Johnson SL. Major depressive disorder and emotion-related impulsivity: Are both related to cognitive inhibition?. Cognitive Therapy and Research 2018;42(4):398-407. [DOI:10.1007/s10608-017-9885-2]
15. Kertzman S, Vainder M, Aizer A, Kotler M, Dannon PN. Pathological gambling and impulsivity: Comparison of the different measures in the behavior inhibition tasks. Personality and Individual Differences 2017;107:212-8. 17. im Y, Jeong JE, Cho H, Jung DJ, Kwak M, Rho MJ, et al. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control. PLoS One 2016;11(8):e0159788. [DOI:10.1016/j.paid.2016.11.042]
16. Mullen J, Mathias CW, Karns TE, Liang Y, Hill-Kapturczak N, Roache JD, et al. Behavioral Impulsivity Does Not Predict Naturalistic Alcohol Consumption or Treatment Outcomes. Addict Disord Their Treat 2016;15(3):120-8. [DOI:10.1097/ADT.0000000000000085] [PMID] [PMCID]
17. Dougherty DM, Olvera RL, Acheson A, Hill-Kapturczak N, Ryan SR, Mathias CW. Acute effects of methylphenidate on impulsivity and attentional behavior among adolescents comorbid for ADHD and conduct disorder. J Adolesc 2016;53:222-30. [DOI:10.1016/j.adolescence.2016.10.013] [PMID] [PMCID]
18. Kim M, Lee TH, Choi JS, Kwak YB, Hwang WJ, Kim T, et al. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity. Sci Rep 2017;7:41742. [DOI:10.1038/srep41742] [PMID] [PMCID]
19. Morein-Zamir S, Robbins TW. Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Res 2015;1628(Pt A):117-29. [DOI:10.1016/j.brainres.2014.09.012] [PMID] [PMCID]
20. Dougherty DM, Lake SL, Mathias CW, Ryan SR, Bray BC, Charles NE, et al. Behavioral Impulsivity and Risk-Taking Trajectories Across Early Adolescence in Youths With and Without Family Histories of Alcohol and Other Drug Use Disorders. Alcohol Clin Exp Res 2015;39(8):1501-9. [DOI:10.1111/acer.12787] [PMID] [PMCID]
21. Weafer J, Dzemidzic M, Eiler W 2nd, Oberlin BG, Wang Y, Kareken DA. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking. Psychiatry Res 2015;233(2):81-7. [DOI:10.1016/j.pscychresns.2015.04.010] [PMID] [PMCID]
22. Norman DA, Shallice T. Attention to action: Willed and automatic control of behaviour. 2000. [URL]
23. Stuss DT, Knight RT, editors. Principles of Frontal Lobe Function. New York: Oxford University Press; 2002. [DOI:10.1093/acprof:oso/9780195134971.001.0001] [PMCID]
24. Davidson RJ, Schwartz GE, Shapiro D, editors. Consciousness and Self-Regulation. New York, USA: Springer SBM; 1986. p. 244. [DOI:10.1007/978-1-4757-0629-1]
25. Goldstein S, Naglieri JA. Handbook of Executive Functioning. Springer; 2014. p. 565. [DOI:10.1007/978-1-4614-8106-5]
26. Carlson SM, Moses LJ. Individual differences in inhibitory control and children's theory of mind. Child Dev 2001;72(4):1032-53. [DOI:10.1111/1467-8624.00333] [PMID]
27. Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, O'Reilly RC. A unified framework for inhibitory control. Trends Cogn Sci 2011;15(10):453-9. [DOI:10.1016/j.tics.2011.07.011] [PMID] [PMCID]
28. Gall MD, Borg WR, Gall JP. Educational Research: An Introduction. 8th Ed. Longman Publishing; 1996. [Google Scholar]
29. Conners CK. A teacher rating scale for use in drug studies with children. Am J Psychiatry 1969;126(6):884-8. [DOI:10.1176/ajp.126.6.884] [PMID]
30. Conners CK, Sitarenios G, Parker JD, Epstein JN. Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol 1998;26(4):279-91. https://doi.org/10.1023/A:1022602400621 [DOI:10.1023/A:1022606501530]
31. Shaked D, Faulkner LMD, Tolle K, Wendell CR, Waldstein SR, Spencer RJ. Reliability and validity of the Conners' Continuous Performance Test. Appl Neuropsychol Adult 2020;27(5):478-87. [DOI:10.1080/23279095.2019.1570199] [PMID]
32. Khodadai M, Mashhadi A, Amani H. Conners' Teacher Rating Scale. Tehran: Institute for Behavioral & Cognitive Science; 2014. (Persian)
33. Conners CK, Epstein JN, Angold A, Klaric J. Continuous performance test performance in a normative epidemiological sample. J Abnorm Child Psychol 2003;31(5):555-62. [DOI:10.1023/A:1025457300409] [PMID]
34. Epstein JN, Erkanli A, Conners CK, Klaric J, Costello JE, Angold A. Relations between Continuous Performance Test performance measures and ADHD behaviors. J Abnorm Child Psychol 2003;31(5):543-54. [DOI:10.1023/A:1025405216339] [PMID]
35. Khodadai M, Mashhadi A, Amani H. Continuous Performance Test Software. Tehran: Institute for Behavioral & Cognitive Science; 2014. (Persian)
36. Bar-Yosef C, Weinblatt N, Katz N. Reliability and Validity of the Cognitive Performance Test (CPT) in an Elderly Population in Israel. Physical & Occupational Therapy in Geriatrics 2000;17(1):65-79. [DOI:10.1080/J148v17n01_06]
37. Fang P, Zeng LL, Shen H, Wang L, Li B, Liu L, et al. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS One 2012;7(9):e45972. [DOI:10.1371/journal.pone.0045972] [PMID] [PMCID]
38. Luria AR. The frontal lobes and the regulation of behavior. in PFL: Elsevier; 1973. p. 3-26. [DOI:10.1016/B978-0-12-564340-5.50006-8]
39. Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage 2001;13(2):250-61. [DOI:10.1006/nimg.2000.0685] [PMID]
40. Masharipov R, Kireev M, Korotkov A, Medvedev S. Non-selective response inhibition during an equal probability Go/NoGo task: Bayesian analysis of fMRI data. BioRxiv 2019:823625. [DOI:10.1101/823625]
41. Cieslik EC, Mueller VI, Eickhoff CR, Langner R, Eickhoff SB. Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neuroscience & biobehavioral reviews 2015;48:22-34. [DOI:10.1016/j.neubiorev.2014.11.003] [PMID] [PMCID]
42. Liddle PF, Kiehl KA, Smith AM. Event-related fMRI study of response inhibition. Hum Brain Mapp 2001;12(2):100-9. https://doi.org/10.1002/1097-0193(200102)12:2<100::AID-HBM1007>3.0.CO;2-6 [DOI:10.1002/1097-0193(200102)12:23.0.CO;2-6]
43. Young ME, Sutherland SC, McCoy AW. Optimal go/no-go ratios to maximize false alarms. Behav Res Methods 2018;50(3):1020-9. [DOI:10.3758/s13428-017-0923-5] [PMID]
44. Hwang S, Meffert H, Parsley I, Tyler PM, Erway AK, Botkin ML, et al. Segregating sustained attention from response inhibition in ADHD: An fMRI study. Neuroimage Clin 2019;21:101677. [DOI:10.1016/j.nicl.2019.101677] [PMID] [PMCID]
45. Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 1982;298(1089):199-209. 48. Anderson P, Anderson V, Lajoie G. The tower of London test: Validation and standardization for pediatric populatons. Clin Neuropsychol 1996;10(1):54-65. [DOI:10.1080/13854049608406663]
46. Morris RG, Ahmed S, Syed GM, Toone BK. Neural correlates of planning ability: frontal lobe activation during the Tower of London test. Neuropsychologia 1993;31(12):1367-78. [DOI:10.1016/0028-3932(93)90104-8]
47. Andrés P. Supervisory attentional system in patients with focal frontal lesions. J Clin Exp Neuropsychol 2001;23(2):225-39. [DOI:10.1076/jcen.23.2.225.1212] [PMID]
48. Epstein JN, Conners CK, Sitarenios G, Erhardt D. Continuous performance test results of adults with attention deficit hyperactivity disorder. Clin Neuropsychol 1998;12(2):155-68. [DOI:10.1076/clin.12.2.155.2000]
49. Bezdjian S, Baker LA, Lozano DI, Raine A. Assessing inattention and impulsivity in children during the Go/NoGo task. Br J Dev Psychol 2009;27(Pt 2):365-83. [DOI:10.1348/026151008X314919] [PMID] [PMCID]
50. Houghton S, Douglas G, West J, Whiting K, Wall M, Langsford S, et al. Differential patterns of executive function in children with attention-deficit hyperactivity disorder according to gender and subtype. J Child Neurol 1999;14(12):801-5. [DOI:10.1177/088307389901401206] [PMID]
51. Narimani M, Abassi M, Bagiyan MJ, Rezaie A. The effectiveness of impulse control and attention training on emotional processing, impulsiveness and distractibility in students with dyscalculia. Research in Cognitive and Behavioral Sciences 2016;5(2):1-22. [URL]
52. Cassuto H, Ben-Simon A, Berger I. Using environmental distractors in the diagnosis of ADHD. Frontiers in human neuroscience 2013;7:805. [DOI:10.3389/fnhum.2013.00805] [PMID] [PMCID]
53. Bioulac S, Micoulaud-Franchi JA, Maire J, Bouvard MP, Rizzo AA, Sagaspe P, et al. Virtual Remediation Versus Methylphenidate to Improve Distractibility in Children With ADHD: A Controlled Randomized Clinical Trial Study. J Atten Disord 2020;24(2):326-335. [DOI:10.1177/1087054718759751] [PMID]
54. Karbach J, Kray J. Executive functions. In: Cognitive training. Springer; 2016. p. 93-103. [DOI:10.1007/978-3-319-42662-4_9]
55. Frith CD, Friston KJ, Liddle PF, FRACKOWIAK RJ. (1991) Willed action and the prefrontal cortex in man: a study with PET. In: Discovering the Social Mind. Psychology Press; 2016. p. 117-26.. [Google Scholar]
56. Gilsoul J, Simon J, Hogge M, Collette F. Do attentional capacities and processing speed mediate the effect of age on executive functioning? Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2019;26(2):282-317. [DOI:10.1080/13825585.2018.1432746] [PMID]
57. Andrés P, Van der Linden M. Age-related differences in supervisory attentional system functions. J Gerontol B Psychol Sci Soc Sci 2000;55(6):P373-80. [DOI:10.1093/geronb/55.6.P373] [PMID]
58. Winstanley CA, Eagle DM, Robbins TW. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 2006;26(4):379-95. [DOI:10.1016/j.cpr.2006.01.001] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb