Volume 31, Issue 11 (February 2021)                   Studies in Medical Sciences 2021, 31(11): 836-846 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

yazdani S, Elhami M. EFFECT OF MOTOR DUAL TASK ON THE ELECTROMYOGRAPHY OF LOWER LIMB AND TRUNK MUSCLES DURING GAIT IN CEREBRAL PALSY AND HEALTHY SUBJECTS. Studies in Medical Sciences 2021; 31 (11) :836-846
URL: http://umj.umsu.ac.ir/article-1-5124-en.html
PhD. of Sport Biomechanics, Department of Motor Behavior, Faculty Of Physical Education, University of Tabriz, Tabriz, Iran. (Corresponding Author) , sh_yazdani@tabrizu.ac.ir
Abstract:   (2483 Views)
Background & Aims: This study aimed to investigate the effect of motor dual task on the electromyographic activity of lower limb and trunk muscles during gait in cerebral palsy (CP) and healthy subjects.
Materials & Methods: 10 patients with CP and 10 healthy matched subjects participated in this study voluntarily. Using an EMG USB2+ system and bipolar electrodes, the electromiyographic activity of biceps femoris (BF), rectus femoris (RF), and erector spinea at L3 level (L3) was recorded during gait with and without motor dual task. The gathered signals were processed using OT Biolab software. SPSS 22 software and ANOVA with significance level of 0.05 were used for statistical analysis.
Results: Results showed that CP patients had greater normalized EMG of right and left L3 and left BF and RF muscle than control group. Motor dual task increased muscle activity in both groups (p=0.001) and had the same effect on the EMG of both right and left sides of healthy subjects. However, in the CP patients, motor dual task resulted in a higher muscle activity on the left side than the right side (p=0.01).
Conclusion: Motor dual task increases EMG activity of RF, BF, and L3 muscle of CP patient's more than healthy subjects. This increase can be attributed to the greater attempt of these subjects to maintain body posture and dynamic balance. So, focus on the motor dual task can be recommended in evaluating and designing an appropriate exercise program for CP patients.
Full-Text [PDF 692 kb]   (1139 Downloads)    
Type of Study: Research | Subject: طب فیزیکی

References
1. Arnould C, Pentam, thonnard Jh. Hand functioning in children with cerebral palsy. these presenteeen delobtention grade Docteuren Kinesi therapio Readaptation orientation: Sciences de la motricite catholic university of London 2006. [URL]
2. Charles J, Gordon AM. A critical review of constraint-induced movement therapy and forced use in children with hemiplegia. Neural plasticity 2005;12(2-3):245-61. [DOI:10.1155/NP.2005.245] [PMID] [PMCID]
3. Nori J, Seifnaraghi M, Ashayeri H. The effect of sensory integration intervention on improvement of gross motor and fine motor skills inchildren with cerebral palsy aged 8-12. Exceptional Education (105). 2010;21-31. [URL]
4. Kulak W, Sobaniec W. Comparisons of right and left hemiparetic cerebral palsy. Pediatr Neurol 2004 ;31(2):101-8. [DOI:10.1016/j.pediatrneurol.2004.01.009] [PMID]
5. Gordon AM, Charles J, Wolf SL. Efficacy of constraint-induced movement therapy on involved upper-extremity use in children with hemiplegic cerebral palsy is not age-dependent. Pediatrics 2006;117(3):e363-73. [DOI:10.1542/peds.2005-1009] [PMID]
6. Rose J, Wolff DR, Jones VK, Bloch DA, Oehlert JW, Gamble JG. Postural balance in children with cerebral palsy. Dev Med Child Neurol 2002 Jan;44(1):58-63. [DOI:10.1111/j.1469-8749.2002.tb00260.x]
7. Galli M, Cimolin V, Rigoldi C, Tenore N, Albertini G. Gait patterns in hemiplegic children with cerebral palsy: comparison of right and left hemiplegia. Res Dev Disabil 2010;31(6):1340-5. [DOI:10.1016/j.ridd.2010.07.007] [PMID]
8. Riad J, Haglund-Akerlind Y, Miller F. Classification of spastic hemiplegic cerebral palsy in children. J Pediatr Orthop 2007 ;27(7):758-64. [DOI:10.1097/BPO.0b013e3181558a15] [PMID]
9. Bruijn SM, Millard M, Van Gestel L, Meyns P, Jonkers I, Desloovere K. Gait stability in children with Cerebral Palsy. Res Dev Disabil 2013 ;34(5):1689-99. [DOI:10.1016/j.ridd.2013.02.011] [PMID] [PMCID]
10. Cimolin V, Galli MA, Tenore NU, Albertini GI, Crivellini M. Gait strategy of uninvolved limb in children with spastic hemiplegia. Eura Medicophys2007 ;43(3):303-10. [Google Scholar]
11. Houwink A, Aarts PB, Geurts AC, Steenbergen B. A neurocognitive perspective on developmental disregard in children with hemiplegic cerebral palsy. Res Dev Disabil 2011 ;32(6):2157-63. [DOI:10.1016/j.ridd.2011.07.012] [PMID]
12. Iranmanesh H, Arab-Amer A, Farokhi A, Iranmanesh H. Effects of single and dual task balance training program on balance in the elderly. Journal of Learning Motor-Sport 2014; 6:195-215. [URL]
13. Azadian E, Taheri H R, Saberi Kakhki A, Farahpour N. Effects of dual-tasks on spatial-temporal parameters of gait in older adults with impaired balance. Salmand Iran J Ageing 2016 ;11(4): 100-9. [DOI:10.21859/sija-1101100]
14. Mishra N. Comparison of effects of motor imagery, cognitive and motor dual task training methods on gait and balance of stroke survivors. Indian J Occup Ther 2015 ;47:46-51. [Google Scholar]
15. Beck EN, Intzandt BN, Almeida QJ. Can dual task walking improve in parkinson's disease after external focus of attention exercise? A single blind randomized controlled trial. Neurorehabil Neural Repair 2018 ;32(1):18-33. [DOI:10.1177/1545968317746782] [PMID]
16. Ricklin S, Meyer-Heim A, van Hedel HJ. Dual-task training of children with neuromotor disorders during robot-assisted gait therapy: prerequisites of patients and influence on leg muscle activity. J Neuroeng Rehabil 2018; 15(1): 82. [DOI:10.1186/s12984-018-0426-3] [PMID] [PMCID]
17. Zaslow T, Burton C, Mueske NM, Conrad-Forrest A, Edison B, Wren TA. Dual-task balance control in adolescent athletes following concussion. Orthop J Sports Med 2020; 8(4_suppl3): 2325967120S00152. [DOI:10.1177/2325967120S00152] [PMCID]
18. Carcreff L, Bonnefoy-Mazure A, Valenza N, Allali G, Fluss J, Armand S. Influence of cognitive-motor interference on gait spatiotemporal parameters in children and adolescents with cerebral palsy: A preliminary study. Gait Posture 2016;49: 17. [DOI:10.1016/j.gaitpost.2016.07.084]
19. Gharib NM, Abd-El Maksoud GM, Eldin S, Elsayed B. Efficacy of concurrent cognitive-motor training on gait in hemiparetic cerebral palsy: a randomized controlled trial. Int J Physiother Res 2017;5(1):1852-62. [DOI:10.16965/ijpr.2016.206]
20. Katz-Leurer M, Rotem H, Meyer S. Effect of concurrent cognitive tasks on temporo-spatial parameters of gait among children with cerebral palsy and typically developed controls. Dev Neurorehabil 2014 ;17(6):363-7. [DOI:10.3109/17518423.2013.810676] [PMID]
21. O'Sullivan K, Smith SM, Sainsbury D. Electromyographic analysis of the three subdivisions of gluteus medius during weight-bearing exercises. Sports Med Arthrosc Rehabil Ther Technol 2010 ;2(1):17. [DOI:10.1186/1758-2555-2-17] [PMID] [PMCID]
22. Maffiuletti Na, Lepers R. Quadriceps femoris torque and EMG activity in seated versus supine position. Med Sci Sports Exerc2003 ;35(9):1511-6. [DOI:10.1249/01.MSS.0000084426.03247.93] [PMID]
23. Cioni M, Richards CL, Malouin F, Bedard PJ, Lemieux R. Characteristics of the electromyographic patterns of lower limb muscles during gait in patients with Parkinson's disease when OFF and ON L-Dopa treatment. Ital J Neurol Sci1997 ;18(4):195-208. [DOI:10.1007/BF02080464] [PMID]
24. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol2000 ;10(5):361-74. [DOI:10.1016/S1050-6411(00)00027-4]
25. de Sèze MP, Cazalets JR. Anatomical optimization of skin electrode placement to record electromyographic activity of erector spinae muscles. Surg Radiol Anat 2008 ;30(2):137-43. [DOI:10.1007/s00276-007-0289-y] [PMID]
26. Konrad P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography. Noraxon USA, Inc; 2006. [URL]
27. Prosser LA, Lee SC, Barbe MF, VanSant AF, Lauer RT. Trunk and hip muscle activity in early walkers with and without cerebral palsy-a frequency analysis. J Electromyogr Kinesiol2010 ;20(5):851-9. [DOI:10.1016/j.jelekin.2010.04.005] [PMID] [PMCID]
28. Romkes J, Brunner R. An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking. Gait Posture 2007 ;26(4):577-86. [DOI:10.1016/j.gaitpost.2006.12.010] [PMID]
29. Zwaan E, Becher JG, Harlaar J. Synergy of EMG patterns in gait as an objective measure of muscle selectivity in children with spastic cerebral palsy. Gait Posture 2012 ;35(1):111-5. [DOI:10.1016/j.gaitpost.2011.08.019] [PMID]
30. Adjenti SK, Louw G, Jelsma J, Unger M. An electromyographic study of abdominal muscle activity in children with spastic cerebral palsy. S Afr J Physiother2017;73(1):341. [DOI:10.4102/sajp.v73i1.341] [PMID] [PMCID]
31. Reilly DS, Woollacott MH, van Donkelaar P, Saavedra S. The interaction between executive attention and postural control in dual-task conditions: children with cerebral palsy. Arch Phys Med Rehabil2008 ;89(5):834-42. [DOI:10.1016/j.apmr.2007.10.023] [PMID]
32. Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT open reviews 2016 ;1(12):448-60. [DOI:10.1302/2058-5241.1.000052] [PMID] [PMCID]
33. Di Nardo F, Strazza A, Mengarelli A, Cardarelli S, Tigrini A, Verdini F, et al.EMG-based characterization of walking asymmetry in children with mild hemiplegic cerebral palsy. Biosensors 2019; 9(3): 82. [DOI:10.3390/bios9030082] [PMID] [PMCID]
34. Winters TF, Gage JR, Hicks R. Gait patterns in spastic hemiplegia in children and young adults. J Bone Joint Surg Am 1987 ;69(3):437-41. [DOI:10.2106/00004623-198769030-00016] [PMID]
35. Ferdjallah M, Harris GF, Smith P, Wertsch JJ. Analysis of postural control synergies during quiet standing in healthy children and children with cerebral palsy. Clin Biomech 2002 ;17(3):203-10. [DOI:10.1016/S0268-0033(01)00121-8]
36. Whittle MW. Gait analysis: an introduction. Butterworth-Heinemann; 2014 . [URL]
37. Zehr EP, Fujita K, Stein RB. Reflexes from the superficial peroneal nerve during walking in stroke subjects. J Neurophysiol 1998 ;79(2):848-58. [DOI:10.1152/jn.1998.79.2.848] [PMID]
38. Hung YC, Meredith GS. Influence of dual task constraints on gait performance and bimanual coordination during walking in children with unilateral cerebral palsy. Res Dev Disabil 2014 ;35(4):755-60. [DOI:10.1016/j.ridd.2014.01.024] [PMID]
39. Yazdani S, Farahpour N, Delavar A, Farahmand F. Electromyographical activity of erector spinae and glutens medius muscles in patients with adolescent idiopathic scoliosis during gait. J Med Tabriz Univ Med Sic 2017;38(6):84. [URL]
40. Kahneman D. Attention and effort.1st Ed. Englewood cliffs: prentic- Hall International; 1973.
41. Bottcher L, Flachs EM, Uldall P. Attentional and executive impairments in children with spastic cerebral palsy. Dev Med Child Neurol 2010;52(2):e42-7. [DOI:10.1111/j.1469-8749.2009.03533.x] [PMID]
42. Carlsson G, Uvebrant P, Hugdahl K, Arvidsson J, Wiklund LM, von Wendt L. Verbal and non‐verbal function of children with right‐versus left‐hemiplegic cerebral palsy of pre‐and perinatal origin. Dev Med Child Neurol 1994 ;36(6):503-12. [DOI:10.1111/j.1469-8749.1994.tb11880.x] [PMID]
43. Kulak W, Sobaniec W. Comparisons of right and left hemiparetic cerebral palsy. Pediatr Neurol 2004 ; 31(2):101-8. [DOI:10.1016/j.pediatrneurol.2004.01.009] [PMID]
44. Syczewska M, Święcicka A. Are electromyographic patterns during gait related to abnormality level of the gait in patients with spastic cerebral palsy? Acta Bioeng Biomech 2016; 18(3):91-6. [Google Scholar]
45. Franz EA. Bimanual action representation: A window to human evolution. Taking action: Cognitive neuroscience perspectives on intentional acts. In Johnson-Frey SH, Editor. Taking action: Cognitive neuroscience perspectives on intentional acts. The MIT Press; 2003. p. 259-288. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb