Volume 31, Issue 10 (January 2020)                   Studies in Medical Sciences 2020, 31(10): 735-747 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mozafari M, Khodabakhsh Pirklani R. EVALUATION OF COMPLEX STROOP PERFORMANCE OF PATIENTS (CABG), WITHIN THE FIRST YEAR AFTER SURGERY. Studies in Medical Sciences 2020; 31 (10) :735-747
URL: http://umj.umsu.ac.ir/article-1-5068-en.html
Associate professor, Department of Psychology, Faculty of Education and Psychology, Alzahra University, Tehran, Iran (Corresponding Author) , rkhodabakhsh@alzahra.ac.ir
Abstract:   (2555 Views)
Background & Aims: Previous studies have provided contradictory results about attention performance after the coronary artery bypass graft (CABG). With regard to the importance and direct effects of attention strength on the quality of life, this research was designed and conducted to study the complex stroop performance of young patients who underwent CABG one year after surgery.
Materials & Methods: This causal-comparative study was conducted from February 2017 to October 2018. Two groups of individuals, 40 (CABG) male patients within the age range of 30 to 55 years old who were admitted to the ICU in Tehran Heart Center and 64 healthy menparticipated in the study. Both groups were tested with scale complex Stroop.
Results: The results showed that two groups were significantly different(p<0/01) in the power of attention test, the congruent experiment time, incongruent experiment time, congruent reaction time, and incongruent reaction time. Also the two groups were significantly different (p<0/05), in the scores of incongruent non-responses, incongruent correct number, and interference score. The results showed that patients who underwent CABG have overall poorer results for all the scales of stroop test than healthy subjects.
Conclusion: According to the findings of this study, CABG can disturb cognitive functions of the prefrontal lobes in brain after one year. Hence, it is suggested to consider this issue in clinical evaluations of the patients.
Full-Text [PDF 548 kb]   (635 Downloads)    
Type of Study: Research | Subject: قلب و عروق

References
1. Jang HY, Song YK, Kim JH, Kim MG, Han N, Lee HY, et al. Impact of depression on change in coronary heart disease risk status: the Korean Genome and Epidemiology Study (KoGES). Ther Clin Risk Manag 2018; 14: 121-8. [DOI:10.2147/TCRM.S149501] [PMID] [PMCID]
2. Al Jawad MA, Taha S. Nadir oxygen delivery to the brain as a risk factor for post-operative neurocognitive impairment in patients undergoing coronary artery bypass grafting: A myth or fact. J Egypti Soci Car-Thor Sur 2018; 26(1): 49-56. [DOI:10.1016/j.jescts.2018.01.002]
3. Bruggemans EF. Cognitive dysfunction after cardiac surgery: Pathophysiological mechanisms and preventive strategies. Neth Heart J 2013; 21(2): 70-3. [DOI:10.1007/s12471-012-0347-x] [PMID] [PMCID]
4. Ge Y, Ma Z, Shi H, Zhao Y, Gu X, Wei H. Incidence and risk factors of postoperative cognitive dysfunction in patients underwent coronary artery bypass grafting surgery. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2014; 39(10): 1049-55. [Google Scholar]
5. Salzwedel A, Heidler MD, Meng K, Schikora M, Wegscheider K, Reibis R, et al. Impact of cognitive performance on disease-related knowledge six months after multi-component rehabilitation in patients after an acute cardiac event. Eur J Prev Cardiol 2019; 26(1): 46-55. [DOI:10.1177/2047487318791609] [PMID]
6. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, et al. Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery-20181. J Alzheimers Dis 2018; 66(1): 1-10. [DOI:10.3233/JAD-189004] [PMID]
7. Green CM, Schaffer SD. Trends in Anaesthesia and Critical Care, Postoperative cognitive dysfunction in noncardiac surgery: A review. Trends in Anaesthesia and Critical Care 2018;127(2):496-505. [Google Scholar]
8. Schenning KJ, Murchison CF, Mattek NC, Kaye JA, Quinn JF. Sex and genetic differences in postoperative cognitive dysfunction: a longitudinal cohort analysis. Biol Sex Differ 2019; 10(1): 14. [DOI:10.1186/s13293-019-0228-8] [PMID] [PMCID]
9. Gold S, Forryan S. Postoperative cognitive decline: A current problem with a difficult future. Tren Anaeas Crit care 2019; 24: 49-58. [DOI:10.1016/j.tacc.2018.04.002]
10. Yuan SM, Lin H. Postoperative Cognitive Dysfunction after Coronary Artery Bypass Grafting. Braz J Cardiovasc Surg 2019; 34(1): 76-84. [DOI:10.21470/1678-9741-2018-0165]
11. Bürker BS, Gullestad L, Gude E, Relbo Authen A, Grov I, Hol PK,, et al. Cognitive function after heart transplantation: Comparing everolimus-based and calcineurin inhibitor-based regimens. Clin Transplant 2017; 31(4):e12927. [DOI:10.1111/ctr.12927] [PMID]
12. Miyashita R. Postoperative Cognitive Dysfunction After Noncardiac Surgery and Neuroprotection. In Neuroanesthesia and Cerebrospinal Protection. Springer; 2014. p. 631-9. [DOI:10.1007/978-4-431-54490-6_55]
13. Şahan C, Sungur Z, Çamcı E, Sivrikoz N, Sayin Ö, Gurvit H, et al. Effects of cerebral oxygen changes during coronary bypass surgery on postoperative cognitive dysfunction in elderly patients: a pilot study. Rev Bras Anestesiol 2018; 68(2): 142-8. [DOI:10.1016/j.bjan.2017.10.005] [PMID]
14. Owens JA, Spitz G, Ponsford JL, Dymowski AR, Willmott C. An investigation of white matter integrity and attention deficits following traumatic brain injury. Brain Inj 2018; 32(6): 776-83. [DOI:10.1080/02699052.2018.1451656] [PMID]
15. Ilvan G, ÖZKÖSE HZ.The effect of total intravenous anesthesia on the postoperative cognitive functions of young and elderly patients after lumbar disk surgery. Turk J Med Sci 2015; 45(1): 191-6. [DOI:10.3906/sag-1311-29] [PMID]
16. Vide S, Gambús PL. Tools to screen and measure cognitive impairment after surgery and anesthesia. Presse Med 2018; 47(4 Pt 2): e65-e72. [DOI:10.1016/j.lpm.2018.03.010] [PMID]
17. McDonough IM, Wood MM, Miller Jr WS. A Review on the Trajectory of Attentional Mechanisms in Aging and the Alzheimer's Disease Continuum through the Attention Network Test. Yale J Biol Med 2019; 92(1): 37-51. [Google Scholar]
18. Skurvydas A, Valančiene D, Šatas A, Mickevičiene D, Vadopalas K, Karanauskienė D.Are motor and cognitive control, impulsivity and risk-taking behaviour as well as moral decision making determined by the activity of prefrontal cortex during stroop test? Bal J Spor Heal Scien 2018; 1(108). [DOI:10.33607/bjshs.v1i108.7]
19. Rasmussen LS, Johnson T, Kuipers HM, Kristensen D, Siersma VD, Vila P, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiol Scand 2003; 47(3): 260-6. [DOI:10.1034/j.1399-6576.2003.00057.x] [PMID]
20. Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, et al. Central nervous system injury associated with cardiac surgery. Lancet 2006; 368(9536): 694-703. [DOI:10.1016/S0140-6736(06)69254-4]
21. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 2001; 344(6): 395-402. [DOI:10.1056/NEJM200102083440601] [PMID]
22. Susano MJ, Vasconcelos L, Lemos T, Amorim P, Abelha FJ. Adverse postoperative cognitive disorders: a national survey of portuguese anesthesiologists. Rev Bras Anestesiol 2018; 68(5): 472-83. [DOI:10.1016/j.bjan.2018.02.009] [PMID]
23. Dolansky MA, Hawkins MA, Schaefer JT, Gunstad J, Sattar A, Redle JD, et al. Cognitive Function Predicts Risk for Clinically Significant Weight Gain in Adults With Heart Failure. J Cardiovasc Nurs 2017; 32(6): 568-75. [DOI:10.1097/JCN.0000000000000376] [PMID] [PMCID]
24. Scott DA, Evered L, Maruff P, MacIsaac A, Maher S, Silbert BS. Cognitive Function Before and After Left Heart Catheterization. J Am Heart Assoc 2018; 7(6):e008004. [DOI:10.1161/JAHA.117.008004] [PMID] [PMCID]
25. Quan C, Chen J, Luo Y, Zhou L, He X, Liao Y, et al. BIS-guided deep anesthesia decreases short-term postoperative cognitive dysfunction and peripheral inflammation in elderly patients undergoing abdominal surgery. Brain Behav 2019; 9(4): e01238. [DOI:10.1002/brb3.1238] [PMID] [PMCID]
26. Huang C, Chu JM, Liu Y, Chang RC, Wong GT. Varenicline reduces DNA damage, tau mislocalization and post surgical cognitive impairment in aged mice. Neuropharmacology 2018:143: 217-27. [DOI:10.1016/j.neuropharm.2018.09.044] [PMID]
27. Luo RT, Wang PJ, Deng XF, Zhou SJ, Meng ZH, Jing QI, et al. An Integrated Analysis of Risk Factors of Cognitive Impairment in Patients with Severe Carotid Artery Stenosis. Bio Enviro Scien 2018; 31(11): 797-804. [Google Scholar]
28. Gu H, Deng X, Lv Y, Chen Q, Yu W. Preoperational chronic pain impairs the attention ability before surgery and recovery of attention and memory abilities after surgery in non-elderly patients. J Pain Res 2019; 12: 151-8. [DOI:10.2147/JPR.S178118] [PMID] [PMCID]
29. Hartholt KA, van der Cammen TJ, Klimek M. Postoperative cognitive dysfunction in geriatric patients. Z Gerontol Geriatr 2012; 45(5): 411-6. [DOI:10.1007/s00391-012-0326-2] [PMID]
30. Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL. Postoperative cognitive dysfunction: Involvement of neuroinflammation and neuronal functioning. Brain Behav Immun 2014; 38: 202-10. [DOI:10.1016/j.bbi.2014.02.002] [PMID]
31. Golukhova EZ, Polunina A, Davydov DM, Begachev AV. Neural correlates of cognitive dysfunction after cardiac surgery. Brain Res Brain Res Rev 2005; 50(2): 266-74. [DOI:10.1016/j.brainresrev.2005.08.001] [PMID]
32. Sun X, Lindsay J, Monsein LH, Hill PC, Corso PJ. Silent brain injury after cardiac surgery: a review: cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J Am Coll Cardiol 2012; 60(9): 791-7. [DOI:10.1016/j.jacc.2012.02.079] [PMID]
33. Dagres N, Chao TF, Fenelon G, Aguinaga L, Benhayon D, Benjamin EJ, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on arrhythmias and cognitive function: what is the best practice? Europace 2018; 20(9): 1399-1421. [DOI:10.1093/europace/euy046] [PMID] [PMCID]
34. Dailey NS, Smith R, Bajaj S, Alkozei A, Gottschlich MK, Raikes AC, et al., Elevated Aggression and Reduced White Matter Integrity in Mild Traumatic Brain Injury: A DTI Study. Front Behav Neurosci 2018; 12: 118. [DOI:10.3389/fnbeh.2018.00118] [PMID] [PMCID]
35. Erdodi LA, Sagar S, Seke K, Zuccato BG, Schwartz ES, Roth RM. The Stroop test as a measure of performance validity in adults clinically referred for neuropsychological assessment. Psychological assessment 2018; 30(6): 755. [DOI:10.1037/pas0000525] [PMID]
36. Kapoula Z, Lê TT, Bonnet A, Bourtoire P, Demule E, Fauvel C, et al. Poor Stroop performances in 15-year-old dyslexic teenagers. Exp Brain Res 2010; 203(2): 419-25. [DOI:10.1007/s00221-010-2247-x] [PMID]
37. MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull 1991; 109(2): 163-203. [DOI:10.1037/0033-2909.109.2.163] [PMID]
38. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor learning and control: A behavioral emphasis. Champaign, IL: Human Kinetics; 2005. [URL]
39. Logan GD, Delheimer JA. Parallel memory retrieval in dual-task situations: II. Episodic memory. J Exp Psychol Learn Mem Cogn 2001; 27(3): 668-85. [DOI:10.1037/0278-7393.27.3.668] [PMID]
40. Hartley AA. Age differences in dual-task interference are localized to response-generation processes. Psychol Aging 2001; 16(1): 47-54. [DOI:10.1037/0882-7974.16.1.47] [PMID]
41. Welford AT. An apparatus for use in studying serial performance. Am J Psychol 1952; 65(1): 91-7. [DOI:10.2307/1418834] [PMID]
42. Kleiner AF, Pagnussat AS, Di Prisco G, Vagnini A, Stocchi F, De Pandis MF, et al. Analyzing gait variability and dual-task interference in patients with Parkinson's disease and freezing by means of the word-color Stroop test. Aging Clin Exp Res 2018; 30(9): 1137-42. [DOI:10.1007/s40520-017-0862-0] [PMID]
43. Pérez-Belmonte LM, Florido-Santiago M, Osuna-Sánchez J, Barbancho MA, Millán-Gómez M, Jímenez-Navarro MF, et al., Screening Versus Brief Domain-specific Tests to Assess Long-term Postoperative Cognitive Dysfunction After Concomitant Aortic Valve Replacement and Coronary Artery Bypass Grafting. J Cardiovasc Nurs 2019 1;34(6):511-6. [DOI:10.1097/JCN.0000000000000596] [PMID]
44. Relander K, Hietanen M, Rantanen K, Rämö J, Vento A, Saastamoinen KP, et al. Postoperative cognitive change after cardiac surgery predicts long‐term cognitive outcome. Brain Behav 2020 17;10(9):e01750. [DOI:10.1002/brb3.1750] [PMID] [PMCID]
45. Kozak, K.M., Mild Traumatic Brain Injuries and Their Implications on Changes in Event Related Potentials: A look into Visual Gating (P50). (Dissertation). City University of New York (CUNY); 2018 [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb