Volume 31, Issue 3 (June 2020)                   Studies in Medical Sciences 2020, 31(3): 199-208 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5048-en.html
Associate Professor, Department of Exercise Physiology, School of Sports Sciences, Razi University, Kermanshah, Iran. (Corresponding Author) , sport.tadibi@gmail.com
Abstract:   (2605 Views)
Background & Aims: Sodium-dependent ascorbate transporter 2 (SVCT2) plays a key role in the transmission of ascorbic acid to hepatocytes. The aim of this study was to compare the effect of aerobic training on hepatic SVCT2 levels, serum levels of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in diabetic rats.
Materials & Methods: In this interventional and experimental study, 25 male Wistar rats were randomly divided into 5 groups: 1) healthy control, 2) healthy training, 3) diabetes control, 4) diabetes training, and 5) sham. After Induction of diabetes, training program consisted of 6 weeks of running on the treadmill, 5 sessions per week (for 20-40 minutes). Serum and liver tissues were evaluated to investigate the effect of exercise training on ascorbic acid metabolism.
Results: Induction of diabetes significantly decreased serum and hepatic ascorbic acid levels and significantly increased hepatic SVCT2 protein, ALT and AST serum levels (p <0.001). The results also showed that regular aerobic exercise decreased serum glucose levels, serum levels of ALT and AST but had no significant effect on serum hepatic and ascorbic acid levels and hepatic SVCT2.
Conclusion: According to the results of this study, induction of diabetes reduces hepatic ascorbic acid levels, which seems to be associated with hyperglycemia and liver injury. On the other hand, six weeks of aerobic exercise reduced blood glucose and liver transaminases, but had no significant effect on level of serum, hepatic ascorbic acid, and hepatic SVCT2 levels.
Full-Text [PDF 2978 kb]   (679 Downloads)    
Type of Study: Research | Subject: Exercise physiology

1. Ghalavand a, Shakeryan s, Nikbakht m, Mehdipour a, Monazamnezhad a, Delaramnasab m. Effects of Aerobic Training on Cardiorespiratory Factors in Men with Type 2 Diabetes. Journal of Diabetes Nursing. 2014;2(2):8-17. [DOI:10.17795/jjcdc-23346]
2. Ghalavand A, Shakeriyan S, Monazamnezhad A, Delaramnasab M. The effect of resistance training on cardio-metabolic factors in males with type 2 diabetes. Jundishapur J Chronic Dis Care. 2014;3(4). [DOI:10.17795/jjcdc-23346]
3. Lovic D, Piperidou A, Zografou I, Haralambos Grassos H, Pittaras A, Manolis A. The Growing Epidemic of Diabetes Mellitus. Curr Vasc Pharmacol. 2020;18(2):104-9. [DOI:10.2174/1570161117666190405165911] [PMID]
4. Rao GH. Global Epidemics of Obesity and Diabetes: A Renewed Call for Action. EC Diabetes and Metabolic Research. 2019;5(1):01-3. [URL]
5. Mohammadi F, Ghalavand A, Delaramnasab M. Effect of Circuit Resistance Training and L-Carnitine Supplementation on Body Composition and Liver Function in Men with Non-Alcoholic Fatty Liver Disease. Jundishapur J Chronic Dis Care. 2019;8(4):e90213. [DOI:10.5812/jjcdc.90213]
6. Arias IM, Alter HJ, Boyer JL, Cohen DE, Shafritz DA, Thorgeirsson SS, et al. The liver: biology and pathobiology: John Wiley & Sons; 2020. [DOI:10.1002/9781119436812]
7. Ozougwu JC. Physiology of the liver. International Journal of Research in Pharmacy and Biosciences. 2017;4(8):13-24. [URL]
8. Zhang Z, Wang J, Wang H. Correlation of blood glucose, serum chemerin and insulin resistance with NAFLD in patients with type 2 diabetes mellitus. Exp Ther Med. 2018;15(3):2936-40. [DOI:10.3892/etm.2018.5753] [PMID] [PMCID]
9. Abdallah LR, de Matos RC, e Souza YPDM, Vieira-Soares D, Muller-Machado G, Pollo-Flores P. Non-alcoholic Fatty Liver Disease and Its Links with Inflammation and Atherosclerosis. Curr Atheroscler Rep. 2020;22(1):7. [DOI:10.1007/s11883-020-0820-8] [PMID]
10. Chen Z-w, Chen L-y, Dai H-l, Chen J-h, Fang L-z. Relationship between alanine aminotransferase levels and metabolic syndrome in nonalcoholic fatty liver disease. J Zhejiang Univ, Sci. 2008;9(8):616. [DOI:10.1631/jzus.B0720016] [PMID] [PMCID]
11. Ghalavand A, Motamedi P, Rajabi H, Khaledi N. Effect of Diabetes Induction and Exercisetraining on the Level of Ascorbic Acid and Muscle SVCT2 in Male Wistar Rats. The Journal of Shahid Sadoughi University of Medical Sciences. 2019;27(12):2149-58. [DOI:10.18502/ssu.v27i12.2831]
12. Kashiba M, Oka J, Ichikawa R, Kasahara E, Inayama T, Kageyama A, et al. Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats. Free Radical Biol Med. 2002;33(9):1221-30. [DOI:10.1016/S0891-5849(02)01010-9] [PMID]
13. Hierro C, Monte MJ, Lozano E, Gonzalez-Sanchez E, Marin JJ, Macias RI. Liver metabolic/oxidative stress induces hepatic and extrahepatic changes in the expression of the vitamin C transporters SVCT1 and SVCT2. Eur J Nutr. 2014;53(2):401-12. [DOI:10.1007/s00394-013-0536-4] [PMID]
14. Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients. 2013;5(8):2860-79. [DOI:10.3390/nu5082860] [PMID] [PMCID]
15. Amano A, Aigaki T, Maruyama N, Ishigami A. Ascorbic acid depletion enhances expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice. Arch Biochem Biophys. 2010;496(1):38-44. [DOI:10.1016/j.abb.2010.01.012] [PMID]
16. Campos E, Jarrete A, Araujo H, Cayres S, Neto JC, Luciano E. Effect of swimming training on stress-related metabolic parameters of diabetic and non-diabetic rats. Revista Brasileira de Atividade Física & Saúde. 2014;19(2):195-. [DOI:10.12820/rbafs.v.19n2p195]
17. Ghalavand A, Motamedi P, Rajabi H, Khaledi N. The Effect of Six Weeks of Aerobic Training on Serum and Muscle Levels of Ascorbic Acid and SVCT2 of Soleus Muscle Tissue in Wistar Rats. Jundishapur Sci Med J. 2019;17(5):481-90. [Google Scholar]
18. Ghalavand A, Delaramnasab M, Afshounpour M, Zare A. Effects of continuous aerobic exercise and circuit resistance training on fasting blood glucose control and plasma lipid profile in male patients with type II diabetes mellitus. Journal of Diabetes Nursing. 2016;4(1):8-19. [Google Scholar]
19. Ghalavand A, Shakerian S, Zakerkish M, Shahbazian H, MonazamNejad A. The Effect of Resistance Training on Anthropometric Characteristics and Lipid Profile in Men with Type 2 Diabetes Referred to Golestan Hospital. jundishapur scientific medical journal. 2017;13(6):709-20. [Google Scholar]
20. Savini I, Rossi A, Catani MV, Ceci R, Avigliano L. Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun. 2007;361(2):385-90. [DOI:10.1016/j.bbrc.2007.07.007] [PMID]
21. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life sciences. 2010;86(1-2):39-44. [DOI:10.1016/j.lfs.2009.11.003] [PMID]
22. Rodrigues B, Figueroa DM, Mostarda CT, Heeren MV, Irigoyen M-C, De Angelis K. Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovasc Diabetol. 2007;6(1):38. [DOI:10.1186/1475-2840-6-38] [PMID] [PMCID]
23. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13(3):133. [DOI:10.1038/nrendo.2016.162] [PMID]
24. Jensen J, O'Rahilly S. AMPK is required for exercise to enhance insulin sensitivity in skeletal muscles. Mol Metab. 2017;6(4):315. [DOI:10.1016/j.molmet.2017.01.012] [PMID] [PMCID]
25. Tangseefa P, Martin SK, Fitter S, Baldock PA, Proud CG, Zannettino AC. Osteocalcin‐dependent regulation of glucose metabolism and fertility: Skeletal implications for the development of insulin resistance. J Cell Physiol. 2018;233(5):3769-83. [DOI:10.1002/jcp.26163] [PMID]
26. Amatyakul S, Chakraphan D, Chotpaibulpan S, Patumraj S. The effect of long‐term supplementation of vitamin C on pulpal blood flow in streptozotocin‐induced diabetic rats. Clin Hemorheol Microcirc. 2003;29(3, 4):313-9. [PMID]
27. Liu C, Zhong C, Chen R, Zhou X, Wu J, Han J, et al. Higher dietary vitamin C intake is associated with a lower risk of gestational diabetes mellitus: A longitudinal cohort study. Clin Nutr. 2020;39(1):198-203. [DOI:10.1016/j.clnu.2019.01.015] [PMID]
28. Contarteze R, Manchado F, Gobatto C, Mello M. Biomarkers of stress in rats exercised in swimming at intensities equal and superior to the maximal estable lactate phase. Rev Bras Med Esporte. 2007;13:169-74. [DOI:10.1590/S1517-86922007000300008]
29. Parry SA, Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. J Adv Pharm Edu Res. 2020:1-26. [DOI:10.1007/s12325-020-01281-6] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb