Volume 32, Issue 9 (December 2021)                   Studies in Medical Sciences 2021, 32(9): 691-706 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezabakhsh A, Rahbarghazi R. PUTATIVE ROLE OF STEM CELLS IN THE ALLEVIATION OF ISCHEMIC HEART DISEASE; A REVIEW ARTICLE. Studies in Medical Sciences 2021; 32 (9) :691-706
URL: http://umj.umsu.ac.ir/article-1-5578-en.html
Associate Professor, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding author) , rezarahbardvm@gmail.com
Abstract:   (1485 Views)
Background & Aims: Cardiovascular disease is touted as one of the leading casualties in the world and accounts for a third of all deaths. In recent years, stem cells have been introduced as a novel and reliable therapeutic approach for the alleviation of cardiovascular disease. In cell-based therapies, induction of angiogenesis into the ischemic areas is at the center of attention of clinical and basic science specialists. It has been shown that pluripotent stem cells as well as stem cells and progenitor cells drived from tissues like bone marrow are eligible to stimulate angiogenesis to return functionality of ischemic tissues.
Materials & Methods: The present study is a descriptive review study and several articles indexed in PubMed, ISI and Scopus databases on the effective role of stem cells from various sources in stimulating angiogenesis in damaged heart tissue based on repair mechanisms. Has been reviewed. In addition, an attempt has been made to effectively explain the ability of stem cells to increase or improve angiogenic status in ischemic conditions in terms of basic molecular mechanisms.
Results: The results has been shown that stem cells could increase blood flow to the ischemic region of the heart through secretory (paracrine) methods as well as differentiation into the endothelial cell line and accelerate the healing process of damaged areas.
Conclusion: The use of cell therapy-based methods to increase blood flow to the affected areas of the heart is an effective strategy to improve cardiac tissue function.
Full-Text [PDF 745 kb]   (287 Downloads)    

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol 2020;76(25):2982-3021. [DOI:10.1016/j.jacc.2020.11.010] [PMID] [PMCID]
2. Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A, et al. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 2014;173(3):453-66. [DOI:10.1016/j.ijcard.2014.03.008] [PMID]
3. Amini H, Rezaie J, Vosoughi A, Rahbarghazi R, Nouri M. Cardiac progenitor cells application in cardiovascular disease. J Cardiovasc Thorac Res 2017;9(3):127-32 [DOI:10.15171/jcvtr.2017.22] [PMID] [PMCID]
4. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6(4):389-95. [DOI:10.1038/74651] [PMID]
5. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473(7347):298-307. [DOI:10.1038/nature10144] [PMID] [PMCID]
6. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438(7070):932-6. [DOI:10.1038/nature04478] [PMID]
7. Bouïs D, Kusumanto Y, Meijer C, Mulder NH, Hospers GA. A review on pro-and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 2006;53(2):89-103. [DOI:10.1016/j.phrs.2005.10.006] [PMID]
8. De Spiegelaere W, Cornillie P, Casteleyn C, Burvenich C, Van Den Broeck W. Detection of hypoxia inducible factors and angiogenic growth factors during foetal endochondral and intramembranous ossification. Anat Histol Embryol 2010;39(4):376-84. [DOI:10.1111/j.1439-0264.2010.01005.x] [PMID]
9. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 2010;22(5):617-25. [DOI:10.1016/j.ceb.2010.08.010] [PMID]
10. De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 2009;29(5):639-49. [DOI:10.1161/ATVBAHA.109.185165] [PMID]
11. Mazzone M, Dettori D, de Oliveira RL, Loges S, Schmidt T, Jonckx B, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization.Cell 2009;136(5):839-51. [DOI:10.1016/j.cell.2009.01.020] [PMID] [PMCID]
12. Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 2013;3(1):a006569-a. [DOI:10.1101/cshperspect.a006569] [PMID] [PMCID]
13. Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal 2019;13(3):291-301. [DOI:10.1007/s12079-019-00511-z] [PMID] [PMCID]
14. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, et al. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 2012;49(5):390-404. [DOI:10.1159/000338278] [PMID]
15. Bahramsoltani M, Plendl J, Janczyk P, Custodis P, Kaessmeyer S. Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro-an overview. ALTEX Altern Anim Exper 2009;26(2):95-107. [DOI:10.14573/altex.2009.2.95] [PMID]
16. Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J Clin Bioch 2018;33(1):46-52. [DOI:10.1007/s12291-017-0641-x] [PMID] [PMCID]
17. Wakao S, Kitada M, Kuroda Y, Ogura F, Murakami T, Niwa A, et al. Morphologic and Gene Expression Criteria for Identifying Human Induced Pluripotent Stem Cells. PLOS ONE 2012;7(12):e48677. [DOI:10.1371/journal.pone.0048677] [PMID] [PMCID]
18. Goumans M-J, Maring JA, Smits AM. A straightforward guide to the basic science behind cardiovascular cell-based therapies. Heart 2014;100(15):1153-7. [DOI:10.1136/heartjnl-2014-305646] [PMID]
19. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28(6):766-72. [DOI:10.1093/eurheartj/ehl509] [PMID]
20. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964-6. [DOI:10.1126/science.275.5302.964] [PMID]
21. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001;89(1):e1-e7. [DOI:10.1161/hh1301.093953]
22. Hou L, Kim JJ, Woo YJ, Huang NF. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ 2016;310(4):H455-H65. [DOI:10.1152/ajpheart.00726.2015] [PMID] [PMCID]
23. Siavashi V, Nassiri SM, Rahbarghazi R, Vafaei R, Sariri R. ECM‐Dependence of endothelial progenitor cell features. J Cell Biochem 2016;117(8):1934-46. [DOI:10.1002/jcb.25492] [PMID]
24. Patry C, Stamm D, Betzen C, Tönshoff B, Yard BA, Beck GC, et al. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. J Inflamm 2018;15:10 [DOI:10.1186/s12950-018-0186-7] [PMID] [PMCID]
25. Salehinejad P, Moshrefi M, Eslaminejad T. An Overview on Mesenchymal Stem Cells Derived from Extraembryonic Tissues: Supplement Sources and Isolation Methods. Stem Cells Cloning: Adv Appl 2020;13:57. [DOI:10.2147/SCCAA.S248519] [PMID] [PMCID]
26. L Ramos T, Sánchez-Abarca LI, Muntión S, Preciado S, Puig N, López-Ruano G, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 2016;14(1):1-4 [DOI:10.1186/s12964-015-0124-8] [PMID] [PMCID]
27. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt‐modified mesenchymal stem cell‐mediated cardiac protection and functional improvement. FASEB J 2006;20(6):661-9. [DOI:10.1096/fj.05-5211com] [PMID]
28. Mahla RS. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol 2016;2016:6940283-. [DOI:10.1155/2016/6940283] [PMID] [PMCID]
29. Soong B-W, Syu S-H, Wen C-H, Ko H-W, Wu M-L, Hsieh PCH, et al. Generation of induced pluripotent stem cells from a patient with spinocerebellar ataxia type 3. Stem Cell Res 2017;18:29-32. [DOI:10.1016/j.scr.2016.12.017] [PMID]
30. Ghosh D, Mehta N, Patil A, Sengupta J. Ethical issues in biomedical use of human embryonic stem cells (hESCs). J Reprod Health Med 2016;2:S37-S47. [DOI:10.1016/j.jrhm.2016.09.002]
31. Romito A, Cobellis G. Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int 2016;2016:9451492-. [DOI:10.1155/2016/9451492] [PMID] [PMCID]
32. Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med 2020;18(1):336. [DOI:10.1186/s12967-020-02504-8] [PMID] [PMCID]
33. Yu H, Lu K, Zhu J, Wang Ja. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017;121(1):135-54. [DOI:10.1093/bmb/ldw059] [PMID]
34. Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther 2017;8(1):242. [DOI:10.1186/s13287-017-0697-9] [PMID] [PMCID]
35. Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci 2007;104(45):17783-8. [DOI:10.1073/pnas.0706406104] [PMID] [PMCID]
36. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci 2009;106(33):14022-7. [DOI:10.1073/pnas.0903201106] [PMID] [PMCID]
37. Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eu Heart J 2010;31(4):489-501. [DOI:10.1093/eurheartj/ehp568] [PMID]
38. D'Alessandro DA, Kajstura J, Hosoda T, Gatti A, Bello R, Mosna F, et al. Progenitor cells from the explanted heart generate immunocompatible myocardium within the transplanted donor heart. Am Heart Assoc; 2009: 1128-1140. [DOI:10.1161/CIRCRESAHA.109.207266] [PMID] [PMCID]
39. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, et al. The role of the sca‐1+/CD31− cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem cells 2006;24(7):1779-88. [DOI:10.1634/stemcells.2005-0386] [PMID]
40. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci 2003;100(21):12313-8. [DOI:10.1073/pnas.2132126100] [PMID] [PMCID]
41. Tang X-L, Li Q, Rokosh G, Sanganalmath SK, Chen N, Ou Q, et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Cir Circ Res 2016;118(7):1091-105. [DOI:10.1161/CIRCRESAHA.115.307647] [PMID] [PMCID]
42. Rezaie J, Rahbarghazi R, Pezeshki M, Mazhar M, Yekani F, Khaksar M, et al. Cardioprotective role of extracellular vesicles: a highlight on exosome beneficial effects in cardiovascular diseases. J Cell Physiol 2019;234(12):21732-45. [DOI:10.1002/jcp.28894] [PMID]
43. Makridakis M, Roubelakis MG, Vlahou A. Stem cells: insights into the secretome. BBA-Proteins Proteom 2013;1834(11):2380-4. [DOI:10.1016/j.bbapap.2013.01.032] [PMID]
44. Rezaie J, Nejati V, Khaksar M, Oryan A, Aghamohamadzadeh N, Shariatzadeh MA, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res 2018;374(3):555-65. [DOI:10.1007/s00441-018-2895-x] [PMID]
45. Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem cells Dev 2014;23(4):319-32. [DOI:10.1089/scd.2013.0419] [PMID]
46. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med 2010;5(1):121-43. [DOI:10.2217/rme.09.74] [PMID] [PMCID]
47. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 2003;9(1):95-103. [DOI:10.1089/107632703762687573] [PMID]
48. König J, Huppertz B, Desoye G, Parolini O, Fröhlich JD, Weiss G, et al. Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells. Stem cells Dev 2012;21(8):1309-20. [DOI:10.1089/scd.2011.0223] [PMID]
49. Wang N, Zhang R, Wang S-J, Zhang C-L, Mao L-B, Zhuang C-Y, et al. Vascular endothelial growth factor stimulates endothelial differentiation from mesenchymal stem cells via Rho/myocardin-related transcription factor-A signaling pathway. The international Int J Biochem Cell Biol 2013;45(7):1447-56. [DOI:10.1016/j.biocel.2013.04.021] [PMID]
50. Olgasi C, Cucci A, Follenzi A. iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020;21(17):6215. [DOI:10.3390/ijms21176215] [PMID] [PMCID]
51. Clayton ZE, Tan RP, Miravet MM, Lennartsson K, Cooke JP, Bursill CA, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci Rep 2018;38(4):BSR20180563. [DOI:10.1042/BSR20180563] [PMID] [PMCID]
52. Terriaca S, Fiorelli E, Scioli MG, Fabbri G, Storti G, Cervelli V, et al. Endothelial Progenitor Cell-Derived Extracellular Vesicles: Potential Therapeutic Application in Tissue Repair and Regeneration. Int J Mol Sci 2021;22(12):6375. [DOI:10.3390/ijms22126375] [PMID] [PMCID]
53. Amini H, Rezabakhsh A, Heidarzadeh M, Hassanpour M, Hashemzadeh S, Ghaderi S, et al. An Examination of the Putative Role of Melatonin in Exosome Biogenesis. Front. Cell Dev. Biol 2021;9:1396. [DOI:10.3389/fcell.2021.686551] [PMID] [PMCID]
54. Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, et al. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021;11(1):142. [DOI:10.1186/s13578-021-00650-0] [PMID] [PMCID]
55. Hassanpour M, Rezabakhsh A, Rezaie J, Nouri M, Rahbarghazi R. Exosomal cargos modulate autophagy in recipient cells via different signaling pathways. Cell Biosci 2020;10(1):92. [DOI:10.1186/s13578-020-00455-7] [PMID] [PMCID]
56. Bagheri HS, Mousavi M, Rezabakhsh A, Rezaie J, Rasta SH, Nourazarian A, et al. Low-level laser irradiation at a high power intensity increased human endothelial cell exosome secretion via Wnt signaling. Lasers Med Sci 2018;33(5):1131-45. [DOI:10.1007/s10103-018-2495-8] [PMID]
57. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 2013;431(3):566-71. https://doi.org/10.1016/j.bbrc.2020.07.092 [DOI:10.1016/j.bbrc.2013.01.015] [PMCID]
58. Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016;7(6):e2277-e. [DOI:10.1038/cddis.2016.181] [PMID] [PMCID]
59. Xiao J, Pan Y, Li X, Yang X, Feng Y, Tan H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016;7(6):e2277-e. [DOI:10.1038/cddis.2016.181] [PMID] [PMCID]
60. Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 2015;65(15):1525-36. [DOI:10.1016/j.jacc.2015.02.026] [PMID]
61. Andriolo G, Provasi E, Lo Cicero V, Brambilla A, Soncin S, Torre T, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physio 2018;9:1169. [DOI:10.3389/fphys.2018.01169] [PMID] [PMCID]
62. Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through Wnt/β-catenin signaling pathway. J Cardiovasc Pharmacol 2017;70(4):225. [DOI:10.1097/FJC.0000000000000507] [PMID] [PMCID]
63. Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 2015;182:349-60. [DOI:10.1016/j.ijcard.2014.12.043] [PMID] [PMCID]
64. Sasaki K-i, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, et al. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci 2006;103(39):14537-41. [DOI:10.1073/pnas.0604144103] [PMID] [PMCID]
65. Chou S-H, Lin S-Z, Kuo W-W, Pai P, Lin J-Y, Lai C-H, et al. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplant 2014;23(4-5):513-29. [DOI:10.3727/096368914X678436] [PMID]
66. Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eu Heart J 2009;30(24):2978-84. [DOI:10.1093/eurheartj/ehp374] [PMID]
67. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107(18):2294-302. [DOI:10.1161/01.CIR.0000070596.30552.8B] [PMID]
68. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435-9. [DOI:10.1038/380435a0] [PMID]
69. Yamaguchi J-i, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003;107(9):1322-8.. [DOI:10.1161/01.CIR.0000055313.77510.22] [PMID]
70. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006;113(10):1287-94. [DOI:10.1161/CIRCULATIONAHA.105.575118] [PMID]
71. Kanelidis AJ, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circulation Res 2017;120(7):1139-50. [DOI:10.1161/CIRCRESAHA.116.309819] [PMID] [PMCID]
72. Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, et al. Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. J Am Coll Cardiol 2015;66(18):1990-9. [DOI:10.1016/j.jacc.2015.08.879] [PMID] [PMCID]
73. Madigan M, Atoui R. Therapeutic Use of Stem Cells for Myocardial Infarction. Bioeng 2018;5(2):28. [DOI:10.3390/bioengineering5020028] [PMID] [PMCID]
74. Buja LM, Vela D. Immunologic and Inflammatory Reactions to Exogenous Stem Cells: Implications for Experimental Studies and Clinical Trials for Myocardial Repair. J Am Coll Cardio 2010;56(21):1693-700. [DOI:10.1016/j.jacc.2010.06.041] [PMID]
75. Galow A-M, Goldammer T, Hoeflich A. Xenogeneic and Stem Cell-Based Therapy for Cardiovascular Diseases: Genetic Engineering of Porcine Cells and Their Applications in Heart Regeneration. Int J Mol Sci 2020;21(24):9686. [DOI:10.3390/ijms21249686] [PMID] [PMCID]
76. Fan X-L, Zhang Y, Li X, Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020;77(14):2771-94. [DOI:10.1007/s00018-020-03454-6] [PMID] [PMCID]
77. Xu J-Y, Cai W-Y, Tian M, Liu D, Huang R-C. Stem cell transplantation dose in patients with acute myocardial infarction: A meta-analysis. Chronic Diseases and Translational Medicine 2016;2(2):92-101. [DOI:10.1016/j.cdtm.2016.09.006] [PMID] [PMCID]
78. Heslop JA, Hammond TG, Santeramo I, Tort Piella A, Hopp I, Zhou J, et al. Concise review: workshop review: understanding and assessing the risks of stem cell‐based therapies. Stem Cells Transl Med 2015;4(4):389-400. [DOI:10.5966/sctm.2014-0110] [PMID] [PMCID]
79. Tang J-N, Cores J, Huang K, Cui X-L, Luo L, Zhang J-Y, et al. Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Transl Med 2018;7(4):354-9. [DOI:10.1002/sctm.17-0196] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb