Volume 32, Issue 2 (May 2021)                   Studies in Medical Sciences 2021, 32(2): 92-104 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5188-en.html
Department of Microbiology, Biological Science College, Varamin-pishva branch, Islamic Azad University, Varamin-Pishva, Iran (Corresponding Author) , niloofar_noorbakhsh@yahoo.com
Abstract:   (1386 Views)
Background & Aims: One of the most important problems in treatment centers is the infectious diseases caused by antibiotic resistant Acinetobacter Bumanni. This study aimed to isolate and identify carbapenemase and metallo-beta-lactamase producing strains using phenotypic and molecular methods.
Materials & Methods: In this study 79 strains of Acinetobacter Bumanni were isolated from patients hospitalized in Tehran Heart Hospital and identified by biochemical tests. Antibiotic susceptibility of isolates was performed by disc diffusion method. Phenotypic methods such as combined disk test (CDT), double disk synergy test (DDST), and Modified Hodge test (MHT) were performed to identify carbapenemase and metallo-beta-lactamase activity. PCR was performed using specific primers for OXA- 48, OXA-23, and NDM genes.
Results: In this study, the highest resistance in A. baumanii was observed to imipenem and ertapenem by disk diffusion method. By CDT, 96.2% of isolates showed carbapenemase activity and 94.93% showed metallo-beta-lactamase activity in presence of imipenem. Also, by DDST, 86.07% and 91.13% of isolates showed Carbapenemase and metallo-beta-lactamase activity, respectively, and 91.14% of isolates were positive by MHT. The molecular method showed that OXA-48 gene was in 100% of isolates and OXA-23 gene was in 98.73% of isolates and NDM gene did not exist in isolates.
Conclusion: Based on the results, CDT has high susceptibility in other phenotypic methods for identifying carbapenemase and metallo-beta-lactamase activity. Frequency of OXA-48 and OXA-23 genes revealed antibiotic resistance in A. baumanii isolates.
Full-Text [PDF 887 kb]   (566 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

1. Chaulagain BP, Jang SJ, Ahn GY, Ryu SY, Kim DM, Park G, et al. Molecular epidemiology of an outbreak of imipenem-resistant Acinetobacter baumannii carrying the ISAba1-blaOXA-51-like genes in a Korean hospital. Jpn J Infect Dis 2012;65(2):162-6. [DOI:10.7883/yoken.65.162] [PMID]
2. Lee K, Yong D, Jeong SH, Chong Y. Multidrug-resistant Acinetobacter spp.: increasingly problematic nosocomial pathogens. Yonsei med J 2011;52(6):879-91. [DOI:10.3349/ymj.2011.52.6.879] [PMID] [PMCID]
3. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21(3):538-82. [DOI:10.1128/CMR.00058-07] [PMID] [PMCID]
4. Paterson DL, Doi Y. A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis 2007;45(9):1179-81. [DOI:10.1086/522287] [PMID]
5. Holten KB, Onusko EM. Appropriate prescribing of oral beta-lactam antibiotics. Amn Fam physician 2000;62(3):611-20. [Google Scholar]
6. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clinic Microbio Rev 2010; 23(1): 160-201. [DOI:10.1128/CMR.00037-09] [PMID] [PMCID]
7. Stratchounski LS, Kozlov RS, Rechedko GK, Stetsiouk OU, Chavrikova EP, Group RNS. Antimicrobial resistance patterns among aerobic gram-negative bacilli isolated from patients in intensive care units: results of a multicenter study in Russia. Clin Microbiol Infect 1998;4(9):497-507. [DOI:10.1111/j.1469-0691.1998.tb00404.x]
8. Joshi SG, Litake GM, Ghole VS, Niphadkar KB. Plasmid-borne extended-spectrum beta-lactamase in a clinical isolate of Acinetobacter baumannii. J Med Microbiol 2003;52(Pt 12):1125-7. [DOI:10.1099/0022-1317-52-12-1125] [PMID]
9. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging publichealth concern. Lancet Infect Dis 2008; 8(3): 159-66. [DOI:10.1016/S1473-3099(08)70041-0]
10. Marchiaro P, Ballerini V, Spalding T, Cera G, Mussi MA, Moran-Barrio J, et al. A convenient microbiological assay employing cell-free extracts for the rapid characterization of Gram-negative carbapenemase producers. J Antimicrob Chemother 2008;62(2):336-44. [DOI:10.1093/jac/dkn185] [PMID]
11. Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne JP. Epidemiology of Carbapenemase-Producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean Countries. Biomed Res Int 2014;2014:305784. [DOI:10.1155/2014/305784] [PMID] [PMCID]
12. Gao J, Zhao X, Bao Y, Ma R, Zhou Y, Li X, et al. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards. Burns 2014;40(2):295-9. [DOI:10.1016/j.burns.2013.06.003] [PMID]
13. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR, Committee HICPA. Guideline for prevention of surgical site infection, 1999. Am J Infect Control 1999;27(2):97-134. [DOI:10.1016/S0196-6553(99)70088-X]
14. Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 2006;44(8):2974-6. [DOI:10.1128/JCM.01021-06] [PMID] [PMCID]
15. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future.Antimicrob Agents Chemother2011;55:4943-60. [DOI:10.1128/AAC.00296-11] [PMID] [PMCID]
16. Senkyrikova M, Husickova V, Chroma M, Sauer P, Bardon J, Kolar M. Acinetobacter baumannii producing OXA-23 detected in the Czech Republic. SpringerPlus 2013; 2:296-302. [DOI:10.1186/2193-1801-2-296] [PMID] [PMCID]
17. Rezaei A, Fazeli H, Moghadampour M, Halaji M, Faghri J. Determination of antibiotic resistance pattern and prevalence of OXA-type carbapenemases among Acinetobacter baumannii clinical isolates from inpatients in Isfahan, central Iran. Le Infezioni in Medicina 2018;1:61-6. [Google Scholar]
18. Eyvazi Sh, Hakemi-Vala M, Hashemi A, Bagheri Bejestani F, Elahi N. Emergence of NDM-1-Producing Escherichia coli in Iran. Arch Clin Infect Dis 2018; 13(4) [DOI:10.5812/archcid.62029]
19. Bergogne-Berezin E, Towner K. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996;9:148-65. [DOI:10.1128/CMR.9.2.148] [PMID] [PMCID]
20. Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. Front Microbiol 2011;2:203. [DOI:10.3389/fmicb.2011.00203] [PMID] [PMCID]
21. Abdollahiasl A, Kebriaeezadeh A, Nikfar S, Farshchi A, Ghiasi G, Abdollahi M. Patterns of antibiotic consumption in Iran during 2000-2009. Int J Antimicrob Agents 2011;37(5):489-90. [DOI:10.1016/j.ijantimicag.2011.01.022] [PMID]
22. Munoz-Price LS, Weinstein RA. Acinetobacter infection. New Engl J Med 2008;358(12):1271-81. [DOI:10.1056/NEJMra070741] [PMID]
23. Custovic A, Smajlovic J, Tihic N, Hadzic S, Ahmetagic S, Hadzagic H. Epidemiological Monitoring of Nosocomial Infections Caused by Acinetobacter Baumannii. Med Arh 2014;68(6):402. [DOI:10.5455/medarh.2014.68.402-406] [PMID] [PMCID]
24. Ibaneze M, Mejias M, Pichardo C, Lianos A, PachonJ. Activity of Tigecycline (Gar-936) against Acinetobacter baumannii strains, Including those resistant to Imipenem. Antimicrobe chemothet 2004; 48(11):4479-81. [DOI:10.1128/AAC.48.11.4479-4481.2004] [PMID] [PMCID]
25. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012;67(7):1607-15. [DOI:10.1093/jac/dks084] [PMID]
26. Girlich D, Poirel L, Nordmann P. Value of the modier Hodge test detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol 2012;50(2):477-9. [DOI:10.1128/JCM.05247-11] [PMID] [PMCID]
27. Nazari Monazam A, Hosseini Doust S R, Mirnejad R. Prevalence PER and VEB beta-lactamase Genes among Acinetobacter baumannii Isolated from Patients in Tehran by PCR. Iran J Med Microbiol 2015; 8 (4):28-35. [Google Scholar]
28. Irfan S, Zafar A, Guhar D, Ahsan T, Hasan R. Metallo-β-lactamase-producing clinical isolates of Acinetobacter spp and Pseudomonas aeruginosa from intensive care unit patients of a Tertiary care Hospital. Indian J Med Microbiol 2008;26(3):243-5. https://doi.org/10.4103/0255-0857.42035 [DOI:10.1016/S0255-0857(21)01871-5] [PMID]
29. Shin KS, Son BR, Hong SB, Kim J. Dipicolinic acid-based disk methods for detection of metallo-ß-lactamase-producing Pseudomonas spp. and Acinetobacter spp. Diagn Microbiol Infect Dis 2008;62(1):102-5 [DOI:10.1016/j.diagmicrobio.2008.04.015] [PMID]
30. Goudarzi H, Hashemi A, Fallah F, Noori M, Erfanimanesh S, YosefiN, et al., Detection of blaDIM, blaAIM, blaGIM, blaNDM and blaVIM Genes among Acinetobacter baumannii strains isolated from hospitalized patients in Tehran hospitals, Iran J Med Microbiol 2016; 9 (4):32-39. [Google Scholar]
31. Morsi SS. Comparative evaluation of phenotypic and genotypic detection of carbapenem resistant K. pneumonia. Almenhal 2016;25(1):109-16. [DOI:10.12816/0037099]
32. Haji Hashemi B, Farzanehkhah M, Dolatyar A, Imani M, Farzami MR, Rahbar M, et al. A study on prevalence of KPC producing from Klebsiella pneumoniae using Modified Hodge Test and CHROMagar in Iran. Ann Biol Res 2012;3(12):5659-64. [Google Scholar]
33. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemotherapy 2016;28(1):1-9. [DOI:10.1179/1973947815Y.0000000063] [PMID]
34. Aparna Sh, Beena A, Poornima Sh. Comparative Evaluation of Four Phenotypic Tests for Detection of Metallo-β-Lactamase and Carbapenemase Production in Acinetobacter baumannii. J Clin Diagn Res 2014; 8(5):5. [Google Scholar]
35. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-β-Lactamase Producing Isolates of Pseudomonas spp and Acinetobacter spp. J Cli Microbiol 2003;41(10):4623-9. [DOI:10.1128/JCM.41.10.4623-4629.2003] [PMID] [PMCID]
36. Jesudasan MV, Kandathil AJ, Balaji V. Comparison of two methods to detect Carbapenemase and Metallo-β.0-lactamase production in clinical isolates. Indian J med Res 2005;121:780-3. [URL]
37. Amudhan SM, Sekar U, Arunagiri K, Sekar B. OXA Beta-lactamase-mediated carbapenem resistance in Acinetobacter baumannii. Indian J Med Microbiol 2011;29(3):269-74. [DOI:10.4103/0255-0857.83911] [PMID]
38. John S, Balagurunathan R. Metallo beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii. Indian J Med Microbiol 2011;29(3):302-4. [DOI:10.4103/0255-0857.83918] [PMID]
39. Fallah F, Hakemivala M, Hashemi A, Shams S. Emergenece of novel plasimid-mediated beta-lactamase in Klebsiella pneumoniae (REVIEW ARTICLE). Qom Univ Med Sci J 2013;4(24):104-16 [URL]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb