Volume 32, Issue 9 (December 2021)                   Studies in Medical Sciences 2021, 32(9): 648-659 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavinezhad M. THE EFFECT OF AEROBIC TRAINING ON MUSCLE ANGIOGENESIS AND DOWNSTREAM FACTORS OF PI3KR2 PATHWAY IN CARDIAC TISSUE OF DIABETIC RATS. Studies in Medical Sciences 2021; 32 (9) :648-659
URL: http://umj.umsu.ac.ir/article-1-5134-en.html
Department of Sports science, Khoy Branch, Islamic Azad University, Khoy, Iran (Corresponding Author) , mhmousavi@yahoo.com
Abstract:   (2042 Views)
Background & Aims: Regarding the effect of diabetes on vascularization processes, the beneficial effects of aerobic exercise on the cardiovascular system have been proven. This study aimed to determine the effect of aerobic exercise on muscle angiogenesis and downstream factors of the PI3KR2 pathway in cardiac tissue of diabetic rats.
Materials & Methods: Twenty diabetic male Wistar rats (mean weight, 191.9±10.85) were divided into two groups of control (n=10) and training (n=10) and the groups were matched based on weight. 48 hours after the last training session, cardiac tissue samples were taken after an overnight fast. Immunohistochemistry (alkaline phosphatase activity) was used to measure the cardiac muscle capillary density. Also, AKT and eNOS proteins were measured by ELISA method.
Results: Independent t-test showed that 8-week aerobic training significantly increased the capillary density (p=0.018) and also caused a significant increase in the expression of AKT and eNOS proteins as compared to control group (p=0.001).
Conclusion: The results of this study indicated the development of angiogenesis by aerobic exercise in diabetic conditions. According to the results of this study, it can be expressed that aerobic exercise can be used as a non-drug treatment to improve heart perfusion in diabetic patients.
Full-Text [PDF 717 kb]   (661 Downloads)    
Type of Study: Clinical trials | Subject: Exercise physiology

References
1. Raffort J, Hinault C, Dumortier O, Obberghen EV. Circulating microRNAs and diabetes: potential applications in medical practice. Diabetologia 2015; 58:1978-92. [DOI:10.1007/s00125-015-3680-y] [PMID]
2. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diab Res Clin Prac 2011; 94:311-21. [DOI:10.1016/j.diabres.2011.10.029] [PMID]
3. Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes Complications: The MicroRNA Perspective. DIABETES 2011; 60: 1832-7. [DOI:10.2337/db11-0082] [PMID] [PMCID]
4. Salehi E, Khazaei M, Rashidi B, Haghjooye Javanmard Sh. Effect of Rosiglitazone on Coronary Angiogenesis in Diabetic and Control Rats. Journal of Isfahan Medical School 2011; 29(134). [Google Scholar]
5. Boodhwani M, Sodha NR, Mieno S, Xu SH, Feng J, Ramlawi B, et al. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation 2007; 116(11 Suppl): I31-7. [DOI:10.1161/CIRCULATIONAHA.106.680157] [PMCID]
6. Kivela R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H. Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovasc Diabetol 2008; 7: 13. [DOI:10.1186/1475-2840-7-13] [PMID] [PMCID]
7. Abacı A, Oğuzhan A, Kahraman S, Eryol NK, Ünal Ş, Arınç H, et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 1999; 99(17):2239-42. [DOI:10.1161/01.CIR.99.17.2239] [PMID]
8. Werner GS, Ferrari M, Betge S, Gastmann O, Richartz BM, Figulla HR. Collateral function in chronic total coronary occlusions is related to regional myocardial function and duration of occlusion. Circulation 2001;104(23):2784-90. [DOI:10.1161/hc4801.100352] [PMID]
9. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 2007; 101(9): 948-56. [DOI:10.1161/CIRCRESAHA.107.160630] [PMID]
10. Khazaei M, Fallahzadeh A, Sharifi M, Afsharmoghaddam N, HaghjooJavanmardSh, Salehi E. Effects of diabetes on myocardial capillary density and serum biomarkers of angiogenesis in male rats. CLINICS 2011; 66(8):1419-24. [DOI:10.1590/S1807-59322011000800019] [PMID] [PMCID]
11. Kivela R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H. Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovasc Diabetol 2008; 7: 13. [DOI:10.1186/1475-2840-7-13] [PMID] [PMCID]
12. Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise Training Prevents the Microvascular Rarefaction in Hypertension Balancing Angiogenic and Apoptotic Factors Role of MicroRNAs-16, -21, and -126. Hypertension 2012;59(2):513-20. [DOI:10.1161/HYPERTENSIONAHA.111.185801] [PMID]
13. Shekarchizadeh P, Khazaei M, Gharakhanlou R, Karimian J, Safarzadeh AR. The effects of resistance training on plasma angiogenic factors in normal rats. Journal of Isfahan Medical School 2012; 30: 65-73. [URL]
14. Shafiee A, Kordi MR, Gaeini AA, Soleimani M, Nekouei A, Hadidi V. The effect of eight week of high intensity interval training on expression of mir-210 and ephrinA3 mrna in soleus muscle healthy male rats. J Arak Univ Med Sci 2014; 17(84): 26-34. [Google Scholar]
15. Gharbi S, Tavassoli M, Faghihi M. Association of Phosphatidylinositol 3-Kinases Mutations and Mtastasis in Isfahanian Breast Cancer Patients. Journal of Isfahan University (Basic Sciences) 2008; 2(31): 2-14. [Google Scholar]
16. Roviezzo F, Cuzzocrea S, Lorenzo A Di, Brancaleone V, Mazzon E, Paola R Di, et al. Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injury associated with splanchnic artery occlusion shock. Br J Pharmacol 2007; 151: 377-83. [DOI:10.1038/sj.bjp.0707233] [PMID] [PMCID]
17. Nourshahi M, Taheri chadorneshin H, Ranjbar K. The stimulus of angiogenesis during exercise and physical. Quarterly of the Horizon of Medical Sciences 2013; 18(5): 286-296. [URL]
18. Mahrou M, Gaeini A, Javidi M, Chobbineh S. Changes in stimulating factors of angiogenesis, indused by progressive Resistance traininge in diabetic rats. Int J Diabetes Metab 2014; 14(1). [Google Scholar]
19. DA Silva Junior ND, Fernandes T, Soci UP, Monteiro AWA, Phillips MI, Oliveira EM. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc2012; 44(8):1453-62. [DOI:10.1249/MSS.0b013e31824e8a36] [PMID]
20. Nikoii R, Rajabi H, Gharakhanlou R, Atabi F, Omidfar K. The effect of endurance training on mitochondrial and sarcollema lactat transporters in skeletal and cardiac muscles in diabetic rats. Iran J Diabetes Lipid Disord 2012; 11: 223-36. [Google Scholar]
21. Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J Appl Physiol 2005; 98(3):804-9. [DOI:10.1152/japplphysiol.01057.2004] [PMID] [PMCID]
22. Osborn BA, Daar JT, Laddaga RA, Romano FD, Paulson DJ. Exercise training increases sarcolemmal GLUT-4 protein and mRNA content in diabetic heart. J Appl Physiol 1997; 82:828-34. [DOI:10.1152/jappl.1997.82.3.828] [PMID]
23. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. exercise promotes angiogenesis and improves b-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res 2008; 78(2):385-94. [DOI:10.1093/cvr/cvm109] [PMID]
24. Waltenberger J. Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc Res 2001; 49(3):554-60. [DOI:10.1016/S0008-6363(00)00228-5]
25. Sasso FC, Torella D, Carbonara O, Ellison GM, Torella M, Scardone M, et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 2005; 46(5):827-34. [DOI:10.1016/j.jacc.2005.06.007] [PMID]
26. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states a possible explanation for impaired collateral formation in cardiac tissue. Circulation 2002; 105(3):373-9. [DOI:10.1161/hc0302.102143] [PMID]
27. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauch T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol 2006; 291: H1290-8. [DOI:10.1152/ajpheart.00820.2005] [PMID]
28. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56(4):549-80. [DOI:10.1124/pr.56.4.3] [PMID]
29. Laughlin MH, Pollock JS, Amann JF, Hollis ML, Woodman CR, Price EM. Training induces nonuniform increases in eNOS content along the coronary arterial tree. J Appl Physiol 2001; 90(2): 501-10. [DOI:10.1152/jappl.2001.90.2.501] [PMID]
30. Lloyd PG, Prior BM, Li H, Yang HT, Terjung RL. VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats. Am J Physiol Heart Circ Physiol 2005; 288 (2): 759-68. [DOI:10.1152/ajpheart.00786.2004] [PMID]
31. Dastaha S, Tofighi A, Tolouei Azar J, Alivand M. Aerobic exercise leads to upregulation of Mir-126 and angiogenic signaling in the heart tissue of diabetic rats. Gene Reports 2020; 21(2):100914. [DOI:10.1016/j.genrep.2020.100914]
32. Kimura H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol 2003; 50(1):49-59. [DOI:10.18388/abp.2003_3713] [PMID]
33. Snowling NJ, Hopkins WG. Effects of Different Modes of Exercise Training on Glucose Control and Risk Factors for Complications in Type 2 Diabetic Patients a meta-analysis. Diabetes care 2006; 29(11):2518-27. [DOI:10.2337/dc06-1317] [PMID]
34. Prior BM, Yang H, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol 2004; 97: 1119-28. [DOI:10.1152/japplphysiol.00035.2004] [PMID]
35. Yazdani F, Shahidi F, Karimi P. The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. J Physiol Biochem 2020; 76: 291-299. [DOI:10.1007/s13105-020-00733-5] [PMID]
36. Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol 2001; 281: 2528-38. [DOI:10.1152/ajpheart.2001.281.6.H2528] [PMID]
37. Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J physiol 2004; 557: 571-82. [DOI:10.1113/jphysiol.2003.057711] [PMID] [PMCID]
38. Salehi E, Amjadi F, Khazaei M. Angiogenesis in health and disease: role of vascular endothelial growth factor (VEGF). Journal of Isfahan Medical School 2011; 29: 312-26. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb