Volume 31, Issue 4 (July 2020)                   Studies in Medical Sciences 2020, 31(4): 240-254 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ghahremani S, khaleghian M, samadizadeh M. THEORETICAL STUDIES OF CHANGES IN PROPERTIES OF 5-FLUORO-2-DEOXYURIDINE (FUDR) ANTICANCER DRUG BY ADSORPTION ON BORON NITRIDE NANOTUBE (5, 5-11). Studies in Medical Sciences 2020; 31 (4) :240-254
URL: http://umj.umsu.ac.ir/article-1-5006-en.html
Ph.D., Physical Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. (Corresponding Author) , mehr_khaleghian@yahoo.com
Abstract:   (2909 Views)
Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of drug and reduce its side effects.
Materials & Methods: In this study, boron nitride nanotubes (n = 5, m = 5) with 11 angstroms length were used to compare effects of encapsulation anticancer drug 5-Fluoro-2-deoxyuridine(FUDR) with this nanotube. Using Density Functional Theory (DFT) and at theoretical level of M06-2X / 6-31G *, structure of drug, BNNT (5,5-11),  and Nano - Drug System were optimized.
Results: Using the structures optimized, spatial parameters, HOMO-LUMO orbitals, graphs of density of states (DOS), Natural Bond Orbital (NBO), electronic properties, parameters of atoms in molecules (AIM ), and Molecular Electrostatic Potential(MEP) were discussed and results were analyzed.
Conclusion: The NBO and AIM results, absorption energy, and thermodynamic functions indicate that drug adsorption by nanotube process is desirable. Many drugs have low solubility in water and when placed in presence of a polarized substrate such as boron nitride nanotube, a high solubility drug complex is formed through hydrogen bonds with that substrate, which increases solubility of drug and reduces drug accumulation and toxicity in the body.
Full-Text [PDF 3725 kb]   (959 Downloads)    
Type of Study: Research | Subject: General

1. Power DG, Kemeny NE. The role of Floxuridine in metastatic liver disease. Mol Cancer Ther 2009; 8(5): 1015−25. [DOI:10.1158/1535-7163.MCT-08-0709] [PMID]
2. Stefano GDi, Busi C, Fiume L. Floxuridine coupling with lactosaminated human albumin to increase drug efficacy on liver micrometastases. Dig Liver Dis 2002; 34(6): 439−46. [DOI:10.1016/S1590-8658(02)80042-1] [PMID]
3. Shun-rong J, Chen L, Bo Z, Feng Y, Jin X, Jiang L, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta 2010; 1806(1): 29-35. [DOI:10.1016/j.bbcan.2010.02.004] [PMID]
4. Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Controlled Release 2012; 161(2): 152-63. [DOI:10.1016/j.jconrel.2011.09.098] [PMID]
5. Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002; 62(21):6132-40. [Google Scholar]
6. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002; 8(4):1172-81. [Google Scholar]
7. Venkataramanan NS, Ambigapathy S, Mizuseki H, Kawazoe Y. Theoretical prediction of the complexation behaviors of antitumor platinum drugs with cucurbiturils. J Phys Chem B 2012; 116 (48):14029-39. [DOI:10.1021/jp3098044] [PMID]
8. Nojini ZB, Yavari F, Bagherifar S. Preference prediction for the stable inclusion complex formation between cucurbit n= 5-7.urils with anticancer drugs based on platinum (II): Computational study. J Mol Liq 2012; 166: 53-61. [DOI:10.1016/j.molliq.2011.11.014]
9. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9):771-82. [DOI:10.1038/nrd2614] [PMID]
10. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010; 7(11):653-64. [DOI:10.1038/nrclinonc.2010.139] [PMID] [PMCID]
11. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12):751-60. [DOI:10.1038/nnano.2007.387] [PMID]
12. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35:61-7. [DOI:10.1042/BST0350061] [PMID]
13. Kang B, Chang SQ, Dai YD, Chen, D. Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/Chitosan compound nanoparticles for targeted drug carrier, Radiat. Phys Chem 2007; 76(6):968-73. [DOI:10.1016/j.radphyschem.2006.08.011]
14. Chonn A, Cullis PR. Recent advances in liposomal drug-delivery systems. Curr Opin Biotechnol 1995; 6(6):698-708. [DOI:10.1016/0958-1669(95)80115-4] [PMID]
15. Bhirde AA, Patel V, Gavard J, Zhang G., Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotubebased drug delivery. ACS Nano 2009; 3(2):307-16. [DOI:10.1021/nn800551s] [PMID] [PMCID]
16. Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM, et al. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009; 47(9):2152-60. [DOI:10.1016/j.carbon.2009.03.057]
17. Bawa R. NanoBiotech 2008: Exploring global advances in nanomedicine. Nanomedicine 2009; 5(1): 5-7. [DOI:10.1016/j.nano.2009.01.004] [PMID]
18. Suryavanshi AP, Yu MF, Wen J, Tang C, Bando Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl Phys Lett 2004; 84(14): 2527-9. [DOI:10.1063/1.1691189]
19. Chen Y, Zou J, Campbell SJ, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 2004; 84(13): 2430-2. [DOI:10.1063/1.1667278]
20. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Nano Today 2009; 4(1): 8-10. [DOI:10.1016/j.nantod.2008.09.001]
21. Blasé X, Rubio A, Louie SG, Cohen ML. Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhys Lett 1994; 28(5): 335-40. [DOI:10.1209/0295-5075/28/5/007]
22. Ciofani G, Raffa V, Menciassi A, Dario P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosci Nanotechnol 2008; 8(3): 6223-31. [DOI:10.1166/jnn.2008.18375] [PMID]
23. Ricotti L, Fujie T, Vazao H, Ciofani G, Marotta R, Brescia R, et al. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS One 2013; 8(8): e71707. [DOI:10.1371/journal.pone.0071707] [PMID] [PMCID]
24. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine- coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008; 101(4): 850-8. [DOI:10.1002/bit.21952] [PMID]
25. Turcoa SD, Ciofanib G, Cappelloc V, Gemmic M, Cervellia T, Saponaroa C, et al. Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces 2013; 111: 142-9. [DOI:10.1016/j.colsurfb.2013.05.031] [PMID]
26. Ciofania G, Dantib S, Nitti S, Mazzolaia B, Mattolia V, Giorgid M. Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological investigation. Int J Pharm 2013; 444(1-2): 85- 8. [DOI:10.1016/j.ijpharm.2013.01.037] [PMID]
27. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 2009; 131(3): 890-1. [DOI:10.1021/ja807334b] [PMID] [PMCID]
28. Ciofania G, Raffaa V, Menciassia A, Cuschieria A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 2009; 4: 8-10. [DOI:10.1016/j.nantod.2008.09.001]
29. Power DG, Kemeny NE . The role of floxuridine in metastatic liver disease. Mol Cancer Ther 2009; 8(5): 1015-25. [DOI:10.1158/1535-7163.MCT-08-0709] [PMID]
30. Wan X, Yang X, Xiang Y, Wu Y, Yang Y, Ying S, et al. Floxuridine-containing regimens in the treatment of gestational trophoblastic tumor. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2003;25(4):410-3. [Google Scholar]
31. Patt YZ, Boddie AW Jr, Charnsangavej C, Ajani JA, Wallace S, Soski M, et al. Hepatic Arterial Infusion With Floxuridine and Cisplatin: Overriding Importance of Antitumor Effect Versus Degree of Tumor Burden as Determinants of Survival Among Patients With Colorectal Cancer. Int J Clin Oncol 1986; 4(9): 1356-64. [DOI:10.1200/JCO.1986.4.9.1356] [PMID]
32. Mortazavifar A, Raissi H, Akbari A. DFT and MD investigations on the functionalized boron nitride nanotube as an effective drug delivery carrier for Carmustine anticancer drug. Journal of Molecular Liquids 2019; 276: 577-587 . [DOI:10.1016/j.molliq.2018.12.028]
33. El Khalifi M, Duverger E, Gharbi T, Boulahdour H, Picaud F. Theoretical use of boron nitride nanotubes as a perfect container for anticancer molecules. Analytical Methods 2016;8(6):1367-72. [DOI:10.1039/C5AY02822A]
34. M. Hesabi, R. Behjatmanesh-Ardakani, Computational & Theoretical Chemistry. 1117, 61 (2017). [DOI:10.1016/j.comptc.2017.07.018]
35. M. Sheikh, S. Shahab, M. Khaleghian, Rakesh Kumar, Applied Surface Science. 434, 504 (2018). [DOI:10.1016/j.apsusc.2017.10.154]
36. Permyakova ES, Antipina LY, Kovalskii AM, Zhitnyak IY, Gudz KY, Polčak J, et al. Experimental and Theoretical Study of Doxorubicin Physicochemical Interaction with BN(O) Drug Delivery Nanocarriers. The Journal of Physical Chemistry C 2018;122(46):26409-18. 37. Shuying Yu, Wenhua Yang, Sheng Chen, Mengjie Chen, Yezhuo Liu, Zhengzhong Shao, et al. Floxuridine-loaded silk fibroin nanospheres. RSC Adv 2014; 4(35); 18171-7. [DOI:10.1021/acs.jpcc.8b07531]
37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. (Gaussian, Inc.,€ Wallingford CT, 2009).
38. Zhao Y, Schultz NE, Truhlar DG. Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 2005; 123(16):161103. [DOI:10.1063/1.2126975] [PMID]
39. Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res 2008; 41: 157-67. [DOI:10.1021/ar700111a] [PMID]
40. Shahab S, Filippovich L, Sheikhi M, Yahyaei H, Aharodnikova M, Kumar R, et al. Spectroscopic (Polarization FT-IR ExcitedState UV/Vis and 1H NMR) and thermophysical investigations of new synthesized azo dye and its application in polarizing film. J Mater Synth Process 2017; 2(2): 17-23. [DOI:10.11648/j.ajmsp.20170202.11]
41. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 1983; 105 (26): 7512-6. [DOI:10.1021/ja00364a005]
42. Shahab S, Filippovich L, Sheikhi M, Kumar R, Dikusar E, Yahyaei H, et al. Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J Mol Struct 2017; 1141: 703-9. [DOI:10.1016/j.molstruc.2017.04.014]
43. Shahab S, Sheikhi M, Filippovich L, Dikusar Anatol'evich E, Yahyaei H. Quantum chemical modeling of new derivatives of (E,E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J Mol Struct 2017; 1137: 335-48. [DOI:10.1016/j.molstruc.2017.02.056]
44. Masnabadi N, Nori-Shargh D, Azarakhshi F, Zamani Ganji H, Abbasi M, Karamad S,et al. Hybrid-Density Functional Theory, MO Study, and NBO Interpretation of Conformational Behaviors of 2-Halo-1,3-Dioxanes and Their Dithiane and Diselenane Analogs. Phosphorus, Sulfur Silicon Relat Elem 2012; 187(3): 305-20. [DOI:10.1080/10426507.2011.610847]
45. Tasi G, Palinko I, Nyerges L, Fejes P, Foerster H. Calculation of electrostatic potential maps and atomic charges for large molecules. J Chem Inf Comput Sci 1993; 33 (3): 296-9. [DOI:10.1021/ci00013a003]
46. Frisch A, Nielson AB, Holder AJ. GAUSSVIEW User Manual. (Pittsburgh, PA: Gaussian Inc.; 2000. [URL]
47. McQuarrie DA, Simon JD. Physical Chemistry. Sausalito, California: University Science Books; 1997. [URL]
48. Gonz'alez FJ. Thermal simulation of breast tumors. REV MEX FIS 2007; 53(4):323-6. [Google Scholar]
49. Bronzino JD. The Biomedical Engineering Handbook. 3rd ed. Hartford, Connecticut, U.S.A.; 2006 [DOI:10.1201/9781420003857]
50. Chattaraj PK, Poddar A. Molecular Reactivity in the Ground and Excited Electronic States through Density-Dependent Local and Global Reactivity Parameters. J Phys Chem A 1999; 103(43): 8691-9. [DOI:10.1021/jp991214+]
51. Prystupa DA, Anderson A, Torrie BH. Raman and infrared study of solid benzyl alcohol. J Raman Sectors 1994; 25(2): 175-82. [DOI:10.1002/jrs.1250250206]
52. Bader RFW, Nguyen-Dang TT . Quantum Theory of Atoms in Molecules-Dalton Revisited. Adv Quantum Chem 1998; 14: 63-124. [DOI:10.1016/S0065-3276(08)60326-3]
53. Bader RFW. Principle of stationary action and the definition of a proper open system. Phys Rev B 1994; 49(19): 13348. [DOI:10.1103/PhysRevB.49.13348] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb