دوره 35، شماره 7 - ( مهر 1403 )                   جلد 35 شماره 7 صفحات 620-604 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavakoli Z, Taheri M, Roghani M. THE EFFECT OF DIOSGENIN ON COGNITIVE DEFICITS AND OXIDATIVE STRESS INDUCED BY LIPOPOLYSACCHARIDE IN RATS. Studies in Medical Sciences 2024; 35 (7) :604-620
URL: http://umj.umsu.ac.ir/article-1-6326-fa.html
توکلی زهرا، طاهری مهدیه، روغنی مهرداد. اثر دیوسجنین بر اختلال شناختی و استرس اکسیداتیو القاشده با لیپوپلی ساکارید در موش صحرایی. مجله مطالعات علوم پزشکی. 1403; 35 (7) :604-620

URL: http://umj.umsu.ac.ir/article-1-6326-fa.html


استاد، مرکز تحقیقات نوروفیزیولوژی، دانشگاه شاهد، تهران، ایران (نویسنده مسئول) ، mroghani@shahed.ac.ir
چکیده:   (770 مشاهده)
پیش‌زمینه و هدف: التهاب عصبی به‌عنوان بخشی از نوروپاتوژنز اختلال شناختی گزارش شده است. دیوسجنین یک ساپوجنین استروئیدی موجود در شنبلیله است که دارای اثرات ضد‌التهابی، آنتی‌اکسیدانی و ضد آلزایمری است. هدف مطالعه حاضر، بررسی تأثیر دیوسجنین بر اختلال شناختی، فعالیت استیل‌کولین‌استراز و آستروگلیوز به دنبال القا التهاب عصبی در موش صحرایی است.
مواد و روش‌ کار: در این مطالعه تجربی 32 موش صحرایی نر نژاد ویستار بر اساس جدول تصادفی اعداد به 4 گروه کنترل، کنترل تحت تیمار با دیوسجنین، لیپوپلی‌ساکارید، و گروه لیپوپلی‌ساکارید تحت تیمار با دیوسجنین تقسیم شدند. موش‌های تحت تیمار میزان 40 میلی‌گرم بر کیلوگرم دیوسجنین را به مدت هفت روز و روزانه و به فرم خوراکی دریافت کردند. برای القا التهاب عصبی، لیپوپلی‌ساکارید حل‌شده در نرمال سالین به میزان 1 میلی‌گرم بر کیلوگرم به فرم داخل صفاقی در اولین روز و یک ساعت قبل از تزریق دیوسجنین تزریق شد. از تست شاتل باکس برای بررسی حافظه و یادگیری استفاده شد. با استفاده از هموژنه بافتی هیپوکامپ، سنجش پارامترهای مولکولی انجام شد. آنالیز آماری داده‌ها با آزمون آنووای یک‌طرفه و تست تعقیبی توکی و سطح معنی‌داری 05/0 انجام شد.
یافته‌ها: میزان تأخیر هنگام عبور در گروه لیپوپلی‌ساکارید دریافت‌کننده دیوسجنین افزایش معنی‌داری در مقایسه با گروه لیپوپلی‌ساکارید داشت (P<0.01). گروه لیپوپلی‌ساکارید دریافت‌کننده دیوسجنین در مقایسه با گروه لیپوپلی‌ساکارید فعالیت کولین‌استراز کاهش (P<0.05) و کاتالاز افزایش (P<0.05) معنی‌داری پیدا کرد و کاهش میزان GFAP (P<0.05) و MDA (P<0.01) نشان داد. میزان GSH در گروه دریافت‌کننده دیوسجنین در مقایسه با گروه کنترل کاهش معنی‌دار (P<0.05) نشان داد. گروه کنترل تحت تیمار با دیوسجنین در فاکتورهای موردبررسی با گروه کنترل تفاوت معنادار نداشت (P>0.05).
بحث و نتیجه‌گیری: داده‌های ما نشان می‌دهد که دیوسجنین با خواص آنتی‌اکسیدانی داروی تقویت‌کننده حافظه است و می‌تواند برای درمان انواع مختلف اختلالات مانند لوسمی و التهاب در آینده مورداستفاده قرار گیرد.
 
متن کامل [PDF 928 kb]   (209 دریافت)    
نوع مطالعه: پژوهشي(توصیفی- تحلیلی) | موضوع مقاله: فیزیولوژی

فهرست منابع
1. Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: A summary report and call to action. Ann Neurol 2017;81(4):479-84 [DOI:10.1002/ana.24897] [PMID]
2. Berger JR, Choi D, Kaminski HJ, Gordon MF, Hurko O, D'Cruz ON, et al. Importance and hurdles to drug discovery for neurological disease. Ann Neurol 2013;74(3):441-6 [DOI:10.1002/ana.23997] [PMID]
3. Nickels KC, Zaccariello MJ, Hamiwka LD, Wirrell EC. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 2016;12(8):465-76 [DOI:10.1038/nrneurol.2016.98] [PMID]
4. Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation 2014;11(1):1-12 [DOI:10.1186/s12974-014-0151-1] [PMID] []
5. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp neurobiol 2015;24(4):325 [DOI:10.5607/en.2015.24.4.325] [PMID] []
6. Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Cell neurosci 2014;8:131 [DOI:10.3389/fncel.2014.00131] [PMID] []
7. Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complementary ther med 2020;49:102294 [DOI:10.1016/j.ctim.2019.102294] [PMID]
8. Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Fron cell neurosci 2018;12:114 [DOI:10.3389/fncel.2018.00114] [PMID] []
9. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019;9(1):1-12 [DOI:10.1038/s41598-019-42286-8] [PMID] []
10. Vandenbark AA, Offner H, Matejuk S, Matejuk A. Microglia and astrocyte involvement in neurodegeneration and brain cancer. J Neuroinflammation 2021;18(1):1-16 [DOI:10.1186/s12974-021-02355-0] [PMID] []
11. Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener 2022;17(1):1-27 [DOI:10.1186/s13024-022-00535-x] [PMID] []
12. Booth HD, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci 2017;40(6):358-70 [DOI:10.1016/j.tins.2017.04.001] [PMID] []
13. Wang L, Lin F, Ren M, Liu X, Xie W, Zhang A, et al. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol 2021;100:108116 [DOI:10.1016/j.intimp.2021.108116] [PMID]
14. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline protects against lipopolysaccharide-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of the rat. Int J Neurosci 2022(just-accepted):1-9 [DOI:10.1080/00207454.2022.2084092] [PMID]
15. Harland M, Torres S, Liu J, Wang X. Neuronal mitochondria modulation of LPS-induced neuroinflammation. J Neurosci 2020;40(8):1756-65 [DOI:10.1523/JNEUROSCI.2324-19.2020] [PMID] []
16. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481-7 [DOI:10.1038/nature21029] [PMID] []
17. Dehghan P, Aliasgharzadeh AA, Asghari Jafar-abadi M, Pourghassem Gargari B. Effects of inulin supplementation on total antioxidant capacity, glutathione peroxidase, superoxidase dismutase and catalase activities of type 2 diabetes patients. Stud Med Sci Res 2014;24(12):977-86 [google scholar]
18. Mehranfard N, Salimi R, Saranjam A, Naderi R. The protective effect of prazosin on oxidative stress in the heart of aged male rats. Stud Med Sci Res 2024;34(12):772-80 [DOI:10.61186/umj.34.12.772]
19. Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 2006;50(5):540-7 [DOI:10.1016/j.neuropharm.2005.10.013] [PMID]
20. Agrawal R, Tyagi E, Shukla R, Nath C. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 2009;56(4):779-87 [DOI:10.1016/j.neuropharm.2009.01.005] [PMID]
21. Naseri A, Khalili M, Haddadzadeh-Niri N, Roghani M. The effect of crocin on liver dysfunction induced by lipopolysaccharide/d-galactosamine in male mouse. Stud Med Sci Res 2023;34(1):25-34 [DOI:10.52547/umj.34.1.25]
22. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 2020;140:104814 [DOI:10.1016/j.nbd.2020.104814] [PMID]
23. Kshirsagar V, Thingore C, Gursahani M, Gawali N, Juvekar A. Hydrogen Sulfide Ameliorates Lipopolysaccharide-Induced Memory Impairment in Mice by Reducing Apoptosis, Oxidative, and Inflammatory Effects. Neurotox Res 2021;39(4):1310-22 [DOI:10.1007/s12640-021-00374-6] [PMID]
24. Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, et al. Piperlongumine improves lipopolysaccharide-induced amyloidogenesis by suppressing NF-KappaB pathway. Neuromol Med 2018;20(3):312-27 [DOI:10.1007/s12017-018-8495-9] [PMID] []
25. Han Y-G, Qin X, Zhang T, Lei M, Sun F-Y, Sun J-J, et al. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation. Neurosci Lett 2018;683:190-5 [DOI:10.1016/j.neulet.2018.06.003] [PMID]
26. Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone attenuates lipopolysaccharide-induced oxidative stress, dopaminergic neuronal loss and neurobehavioral impairment by activating Nrf2/ARE/HO-1. Neurochem Res 2019;44(12):2856-68 [DOI:10.1007/s11064-019-02907-0] [PMID]
27. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 2019;20(9):2293 [DOI:10.3390/ijms20092293] [PMID] []
28. Gong Q-H, Wang Q, Pan L-L, Liu X-H, Huang H, Zhu Y-Z. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol Biochem Behav 2010;96(1):52-8 [DOI:10.1016/j.pbb.2010.04.006] [PMID]
29. Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S. The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 2001;123(1):1-10 [DOI:10.1016/S0378-4274(01)00369-1] [PMID]
30. Tripathi A, Paliwal P, Krishnamurthy S. Piracetam attenuates LPS-induced neuroinflammation and cognitive impairment in rats. Cell Mol Neurobiol 2017;37(8):1373-86 [DOI:10.1007/s10571-017-0468-2] [PMID]
31. Badalzadeh R, Yousefi B, Tajaddini A, Ahmadian N. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial KATP channels in a rat model. Perfusion 2015;30(7):565-71 [DOI:10.1177/0267659114566064] [PMID]
32. Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020;260:118182 [DOI:10.1016/j.lfs.2020.118182] [PMID]
33. Ahmed LA, Al Arqam ZO, Zaki HF, Agha AM. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol 2014;740:379-87 [DOI:10.1016/j.ejphar.2014.07.026] [PMID]
34. Tohda C, Lee Y-A, Goto Y, Nemere I. Corrigendum: Diosgenin-induced cognitive enhancement in normal mice is mediated by 1, 25D3-MARRS. Sci Rep 2015;5 [DOI:10.1038/srep12660] [PMID] []
35. Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an exogenous activator of 1, 25D3-MARRS/Pdia3/ERp57 and improves Alzheimer's disease pathologies in 5XFAD mice. Sci Rep 2012;2(1):1-11 [DOI:10.1038/srep00535] [PMID] []
36. Cheng S-M, Ho Y-J, Yu S-H, Liu Y-F, Lin Y-Y, Huang C-Y, et al. Anti-apoptotic effects of diosgenin in D-galactose-induced aging brain. Am J Chin Med 2020;48(02):391-406 [DOI:10.1142/S0192415X20500202] [PMID]
37. Som S, Antony J, Dhanabal S, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer's disease. Metab Brain Dis 2022:1-14 [DOI:10.21203/rs.3.rs-340454/v1]
38. Mahmoudi N, Kiasalari Z, Rahmani T, Sanaierad A, Afshin-Majd S, Naderi G, et al. Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats: underlying mechanisms. Neuropsychobiology 2021;80(1):25-35 [DOI:10.1159/000507398] [PMID]
39. Khosravi Z, Sedaghat R, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol 2019;70:37-46 [DOI:10.1016/j.intimp.2019.01.047] [PMID]
40. Rostami A, Taleahmad F, Haddadzadeh-Niri N, Joneidi E, Afshin-Majd S, Baluchnejadmojarad T, et al. Sinomenine attenuates trimethyltin-induced cognitive decline via targeting hippocampal oxidative stress and neuroinflammation. J Mol Neurosci 2022;72(8):1609-21 [DOI:10.1007/s12031-022-02021-x] [PMID]
41. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7(2):88-95 [DOI:10.1016/0006-2952(61)90145-9] [PMID]
42. Tayanloo-Beik A, Kiasalari Z, Roghani M. Paeonol ameliorates cognitive deficits in streptozotocin murine model of sporadic Alzheimer's disease via attenuation of oxidative stress, inflammation, and mitochondrial dysfunction. J Mol Neurosci 2022;72(2):336-48 [DOI:10.1007/s12031-021-01936-1] [PMID]
43. Raoufi S, Baluchnejadmojarad T, Roghani M, Ghazanfari T, Khojasteh F, Mansouri M. Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm Biol 2015;53(12):1803-9 [DOI:10.3109/13880209.2015.1008148] [PMID]
44. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 1968;25:192-205 [DOI:10.1016/0003-2697(68)90092-4] [PMID]
45. Dantzer R, O'connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008;9(1):46-56 [DOI:10.1038/nrn2297] [PMID] []
46. Salmani H, Hosseini M, Baghcheghi Y, Moradi-Marjaneh R, Mokhtari-Zaer A. Losartan modulates brain inflammation and improves mood disorders and memory impairment induced by innate immune activation: The role of PPAR-γ activation. Cytokine 2020;125:154860 [DOI:10.1016/j.cyto.2019.154860] [PMID]
47. Mani V, Almutairi SR. Impact of levetiracetam on cognitive impairment, neuroinflammation, oxidative stress, and neuronal apoptosis caused by lipopolysaccharides in rats. Saudi Pharm J 2023;31(9):101728 [DOI:10.1016/j.jsps.2023.101728] [PMID] []
48. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017;96:173-84 [DOI:10.1016/j.cyto.2017.04.015] [PMID]
49. Hakimi Z, Salmani H, Marefati N, Arab Z, Gholamnezhad Z, Beheshti F, et al. Protective effects of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide-challenged rats. Neurotox Res 2020;37(4):965-76 [DOI:10.1007/s12640-019-00144-5] [PMID]
50. Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and anti-inflammatory effects of α-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch Immunol Ther Exp 2023;71(1):16 [DOI:10.1007/s00005-023-00682-z] [PMID] []
51. Tohda C, Yang X, Matsui M, Inada Y, Kadomoto E, Nakada S, et al. Diosgenin-rich yam extract enhances cognitive function: A placebo-controlled, randomized, double-blind, crossover study of healthy adults. Nutrients 2017;9(10):1160 [DOI:10.3390/nu9101160] [PMID] []
52. Kang TH, Moon E, Hong BN, Choi SZ, Son M, Park J-H, et al. Diosgenin from Dioscorea nipponica ameliorates diabetic neuropathy by inducing nerve growth factor. Biol Pharm Bull 2011;34(9):1493-8 [DOI:10.1248/bpb.34.1493] [PMID]
53. Koh E-K, Yun W-B, Kim J-E, Song S-H, Sung J-E, Lee H-A, et al. Beneficial effect of diosgenin as a stimulator of NGF on the brain with neuronal damage induced by Aβ-42 accumulation and neurotoxicant injection. Lab Anim Res 2016;32(2):105-15 [DOI:10.5625/lar.2016.32.2.105] [PMID] []
54. Chiu C-S, Chiu Y-J, Wu L-Y, Lu T-C, Huang T-H, Hsieh M-T, et al. Diosgenin ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am J Chin Med 2011;39(03):551-63 [DOI:10.1142/S0192415X11009020] [PMID]
55. Chiu C-S, Deng J-S, Hsieh M-T, Fan M-J, Lee M-M, Chueh F-S, et al. Yam (Dioscorea pseudojaponica Yamamoto) ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am J Chin Med 2009;37(05):889-902 [DOI:10.1142/S0192415X09007296] [PMID]
56. Park D, Joo SS, Kim TK, Lee SH, Kang H, Lee HJ, et al. Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals. SAGE J. 2012 [DOI:10.3727/096368911X586765] [PMID]
57. Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer's disease. J Psychiatry Neurosci 2004;29(6):427-41 [PMID] [PMCID: PMC524960]
58. Nakdook W, Khongsombat O, Taepavarapruk P, Taepavarapruk N, Ingkaninan K. The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25-35 peptides induced cognitive deficits in mice. J Ethnopharmacol 2010;130(1):122-6 [DOI:10.1016/j.jep.2010.04.027] [PMID]
59. Ghayur MN, Kazim SF, Rasheed H, Khalid A, Jumani MI, Choudhary MI, et al. Identification of antiplatelet and acetylcholinesterase inhibitory constituents in betel nut. Zhong xi yi jie he xue bao= Chin J Integr Med 2011;9(6):619-25 [DOI:10.3736/jcim20110607] [PMID]
60. Abareshi A, Hosseini M, Beheshti F, Norouzi F, Khazaei M, Sadeghnia HR, et al. The effects of captopril on lipopolysaccharide induced learning and memory impairments and the brain cytokine levels and oxidative damage in rats. Life Sci. 2016;167:46-56. [DOI:10.1016/j.lfs.2016.10.026] [PMID]
61. Zhang X-Y, Cao J-B, Zhang L-M, Li Y-F, Mi W-D. Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J Neuroinflammation 2015;12(1):1-13 [DOI:10.1186/s12974-015-0238-3] [PMID] []
62. Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 2017;270:15-23 [DOI:10.1016/j.cbi.2017.03.017] [PMID]
63. Leng J, Li X, Tian H, Liu C, Guo Y, Zhang S, et al. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement Med Ther 2020;20(1):1-9 [DOI:10.1186/s12906-020-02930-7] [PMID] []
64. Ahadi R, Nezhad AM, Tabatabaei FSA, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024;1838:148963 [DOI:10.1016/j.brainres.2024.148963] [PMID]
65. Salehi B, Sharifi-Rad J, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, et al. Cucurbita plants: from farm to industry. Appl Sci 2019;9(16):3387 [DOI:10.3390/app9163387]
66. Ben-Azu B, Adebayo OG, Fokoua AR, Oritsemuelebi B, Chidebe EO, Nwogueze CB, et al. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission. IBRO NEUROSCI REP 2024;16:86-97 [DOI:10.1016/j.ibneur.2023.12.008] [PMID] []
67. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba‐1 or GFAP immunoreactivity following systemic immune challenge. Glia 2016;64(2):300-16 [DOI:10.1002/glia.22930] [PMID] []
68. Lawson MA, McCusker RH, Kelley KW. Interleukin-1 beta converting enzyme is necessary for development of depression-like behavior following intracerebroventricular administration of lipopolysaccharide to mice. J Neuroinflammation 2013;10(1):1-12 [DOI:10.1186/1742-2094-10-54] [PMID] []
69. McGeer PL. Cyclo-oxygenase-2 inhibitors. Drugs Aging 2000;17(1):1-11 [DOI:10.2165/00002512-200017010-00001] [PMID]
70. Mao X, Kelty TJ, Kerr NR, Childs TE, Roberts MD, Booth FW. Creatine supplementation upregulates mTORC1 signaling and markers of synaptic plasticity in the dentate gyrus while ameliorating LPS-induced cognitive impairment in female rats. Nutrients 2021;13(8):2758 [DOI:10.3390/nu13082758] [PMID] []
71. Liu L-r, Liu J-c, Bao J-s, Bai Q-q, Wang G-q. Interaction of microglia and astrocytes in the neurovascular unit. Front immunol 2020;11:1024 [DOI:10.3389/fimmu.2020.01024] [PMID] []
72. Binesh A, Devaraj SN, Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci 2018;196:28-37 [DOI:10.1016/j.lfs.2018.01.012] [PMID]
73. Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S. Protective effects of diosgenin in pentylenetetrazole induced kindling model of epilepsy in mice. Neurochem Neuropharmacol 2015;1(106):2 [DOI:10.4172/2469-9780.1000106]
74. Ghasemi Z, Kiasalari Z, Ebrahimi F, Ansari F, Sharayeli M, Roghani M. Neuroprotective effect of diosgenin in 6-hydroxydopamine-induced model of Parkinson' s disease in the rat. Daneshvar Med 2017;25(2):87-98 [google scholar]
75. Cai B, Seong K-J, Bae S-W, Chun C, Kim W-J, Jung J-Y. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells. Int Immunopharmacol 2018;61:204-14 [DOI:10.1016/j.intimp.2018.05.021] [PMID]
76. Zhang X, Xue X, Zhao J, Qian C, Guo Z, Ito Y, et al. Diosgenin attenuates the brain injury induced by transient focal cerebral ischemia-reperfusion in rats. Steroids 2016;113:103-12 [DOI:10.1016/j.steroids.2016.07.006] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله مطالعات علوم پزشکی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb