Volume 33, Issue 5 (August 2022)                   Studies in Medical Sciences 2022, 33(5): 372-378 | Back to browse issues page

Research code: A-10-5139-1


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javadi M, Shokri R, Soltani H. THE ANTIBACTERIAL ECTIVITY OF COPPER NANOPARTICLES AND COMBINATION WITH COTRIMOXAZOLE AGAINST SALMONELLA TYPHI IN VITRO AND IN ANIMAL MODEL. Studies in Medical Sciences 2022; 33 (5) :372-378
URL: http://umj.umsu.ac.ir/article-1-5765-en.html
Assistant Professor, Department of Microbiology, Faculty of Science, Islamic Azad University, Zanjan, Iran , rsh.bio42@gmail.com
Abstract:   (942 Views)
Background & Aims: Salmonella is a gram-negative bacillus with characterizations of Enterobacteriaceae bacteria. Salmonella typhi is living in the nature as well as digestive system of the humans and animals, which can cause human and animal disease and environmental pollution. The purpose of this research was to investigate the antibacterial effect of copper nanoparticles and its combination with cotrimoxazole antibiotic in laboratory conditions and animal model in order to produce a more effective antimicrobial drug against Salmonella typhi.
Materials & Methods: In this clinical trial study, certain amounts of medium were prepared and subjected to the effect of the drug. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for copper nanoparticles and its combination with cotrimoxazole was mesured using microdilution method. Then, their antibacterial effect was investigated in vitro and in infected mouse model. SPSS version 18 software was used for statistical analysis of the results. In P< 0.05 was considered as a significant level.
Results: MIC and MFC for Salmonella typhi were 2000 ppm and 4000 ppm for copper nanoparticles alone, were 125 ppm and 250 ppm for the combination of copper nanoparticles with cotrimoxazole, and were 500 ppm and 1000 ppm for cotrimoxazole alone, respectively. The mouse model was confirmed to investigate the antibacterial effect of copper nanoparticles and its combination with cotrimoxazole against Salmonella typhi infection. The combination of copper nanoparticles with cotrimoxazole has the most antibacterial effect compared to others groups for Salmonella typhi.
Conclusion: The combination of copper nanoparticles with cotrimoxazole is very effective in comparison with other groups, especially antibacterial cotrimoxazol, and therefore could be used clinically.
Full-Text [PDF 445 kb]   (329 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

References
1. Barnett R. Typhoid fever. Lancet 2016; 388(10059):2467. [DOI:10.1016/S0140-6736(16)32178-X] [PMID]
2. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015;28(4):901-37. Available from: http://dx.doi.org/10.1128/CMR.00002-15. [DOI:10.1128/CMR.00002-15] [PMID] [PMCID]
3. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med 2002;347(22):1770-82. Available from: http://dx.doi.org/10.1056/nejmra020201. [DOI:10.1056/NEJMra020201] [PMID]
4. Lynch MF, Blanton EM, Bulens S, Polyak C, Vojdani J, Stevenson J, Medalla F, Barzilay E, Joyce K, Barrett T, Mintz ED. Typhoid fever in the United States, 1999-2006. JAMA 2009;302(8):859-65. [DOI:10.1001/jama.2009.1229] [PMID]
5. Imanishi M, Newton AE, Vieira AR, Gonzalez-Aviles G, Kendall Scott ME, Manikonda K, Maxwell TN, Halpin JL, Freeman MM, Medalla F, Ayers TL, Derado G, Mahon BE, Mintz ED. Typhoid fever acquired in the United States, 1999-2010: epidemiology, microbiology, and use of a space-time scan statistic for outbreak detection. Epidemiol Infect 2015;143(11):2343-54. [DOI:10.1017/S0950268814003021] [PMID] [PMCID]
6. Hamilton, Richard. Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 105. ISBN-13: 978-1-284-05756-0. [URL]
7. Ponce AA, Klabunde KJ. Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J Mol Catal A Chem 2005;225(1):1-6. Available from: http://dx.doi.org/10.1016/j.molcata.2004.08.019. [DOI:10.1016/j.molcata.2004.08.019]
8. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18(17): 6679-86. [DOI:10.1021/la0202374]
9. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 2008;4(3):707-16. Available from: http://dx.doi.org/10.1016/j.actbio.2007.11.006. [DOI:10.1016/j.actbio.2007.11.006] [PMID]
10. Corona A, Bertolini G, Lipman J, Wilson AP, Singer M. Antibiotic use and impact on outcome from bacteraemic critical illness: the BActeraemia Study in Intensive Care (BASIC). J Antimicrob Chemother 2010;65(9):2061. Available from: http://dx.doi.org/10.1093/jac/dkq267. [DOI:10.1093/jac/dkq267]
11. Tran QH, Nguyen VQ, Le AT. Corrigendum: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives (Adv. Nat. Sci: Nanosci. Nanotechnol. 4 033001). Adv Nat Sci Nanosci Nanotechnol 2018;9(4):049501. Available from: http://dx.doi.org/10.1088/2043-6254/aad12b [DOI:10.1088/2043-6254/aad12b]
12. Naeini A, Khosravi A, Tadjbakhsh H, Ghazanfari T, Yaraee R, Shokri H. Evaluation of the immunostimulatory activity of Ziziphora tenuior extracts. Comp Clin Path 2010;19(5):459-63. Available from: http://dx.doi.org/10.1007/s00580-009-0885-9. [DOI:10.1007/s00580-009-0885-9]
13. Sinnott CR, Teall AJ. Persistent gallbladder carriage of Salmonella Typhi. Lancet 1987;1:976 [DOI:10.1016/S0140-6736(87)90319-9] [PMID]
14. Schiøler H, Christiansen ED, Høybye G, Rasmussen SN, Greibe J. Biliary calculi in chronic Salmonella carriers and healthy controls: a controlled study. Scand J Infect Dis 1983;15(1):17-9. Available from: http://dx.doi.org/10.3109/inf.1983.15.issue-1.04. [DOI:10.3109/inf.1983.15.issue-1.04] [PMID]
15. Fluit AC. Towards more virulent and antibiotic-resistant Salmonella? FEMS Immunol Med Microbiol 2005;43(1):1-11. Available from: http://dx.doi.org/10.1016/j.femsim.2004.10.007. [DOI:10.1016/j.femsim.2004.10.007] [PMID]
16. Samarkandi M., Hosseinzadeh A., Alikhani M. Sensitivity and kinetics of death of Escherichia coli and Staphylococcus aureus to zinc oxide and copper oxide nanoparticles. J Adv Med Biomed Res 2013;20(82):31-43. (Persian) [URL]
17. Rani R, Kumar H, Salar RK, Purewal SS. Antibacterial activity of copper oxide nanoparticles against gram negative bacterial strain synthesized by reverse micelle technique. Int J Pharm Res Dev 2014;6(1):72-8.. [URL]
18. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 2012;71:114-6. Available from: http://dx.doi.org/10.1016/j.matlet.2011.12.055 [DOI:10.1016/j.matlet.2011.12.055]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb