Volume 32, Issue 9 (December 2021)                   Studies in Medical Sciences 2021, 32(9): 674-683 | Back to browse issues page


XML Persian Abstract Print


Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran (Corresponding author) , paknejadma@tums.ac.ir
Abstract:   (1699 Views)
Currently, chemotherapy and surgery are the main strategies in the clinical treatment of cancer. However, the side effects of chemotherapy drugs on normal tissues affect the quality of a patient’s life. In addition, the resistance of the cancer cells to anticancer drugs limits the therapeutic effects. Therefore, the discovery of new treatments to improve cancer therapy is required. In recent years, many studies have shown the potential inhibitory effects of mesenchymal stem cells in cancer progression. Human amniotic fluid mesenchymal stem cells (hAFMSCs) are the unique type of human mesenchymal stem cells that are suitable for some human diseases. Furthermore, recently there are investigations on the anticancer effects of these types of cells. Conditioned medium of mesenchymal stem cells has more advantages than stem cells, such as being easy to produce, package, freeze, and transport, which can lead to drug production. As a result, the conditioned media of amniotic fluid mesenchymal stem cells can be a beneficial candidate for cancer treatment.
Full-Text [PDF 925 kb]   (568 Downloads)    
Type of Study: Review article | Subject: بیوشیمی

References
1. Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 2015;517(7535):489-92. [DOI:10.1038/nature13898] [PMID] [PMCID]
2. WHO. Cancer [Internet]. [cited 2022 Mar 10]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. [URL]
3. Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 2018;35(4):309-18. [DOI:10.1007/s10585-018-9903-0] [PMID]
4. Kang NH, Hwang KA, Kim SU, Kim YB, Hyun SH, Jeung EB, et al. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 2012;19(8):517-22. [DOI:10.1038/cgt.2012.30] [PMID]
5. Kalra K, Tomar P. Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics 2014;2(7):919-30. [Google Scholar]
6. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007;77(3):577-88. [DOI:10.1095/biolreprod.106.055244] [PMID]
7. Dobreva MP, Pereira PN, Deprest J, Zwijsen A. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 2010;54(5):761-77. [DOI:10.1387/ijdb.092935md] [PMID]
8. Bose B. Burn wound dressing with human amniotic membrane. Ann R Coll Surg Engl 1979;61(6):444-7. [Google Scholar]
9. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000;19(3):348-52. [DOI:10.1097/00003226-200005000-00018] [PMID]
10. Arai N, Tsuno H, Okabe M, Yoshida T, Koike C, Noguchi M, et al. Clinical application of a hyperdry amniotic membrane on surgical defects of the oral mucosa. J Oral Maxillofac Surg 2012;70(9):2221-8. [DOI:10.1016/j.joms.2011.09.033] [PMID]
11. Kazemnejad S, Khanmohammadi M, Zarnani A-H, Bolouri MR. Characteristics of Mesenchymal Stem Cells Derived from Amniotic Membrane: A Potential Candidate for Stem Cell-Based Therapy. In Perinatal Tissue-Derived Stem Cells. Springer; 2016. p. 137-69. [DOI:10.1007/978-3-319-46410-7_7]
12. Cai J, Li W, Su H, Qin D, Yang J, Zhu F, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 2010;285(15):11227-34. [DOI:10.1074/jbc.M109.086389] [PMID] [PMCID]
13. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 2009;4(3):423-33. [DOI:10.2217/rme.09.12] [PMID]
14. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 2007;7(1):1-14. [DOI:10.1186/1471-213X-7-11] [PMID] [PMCID]
15. Kim J, Lee Y, Kim H, Hwang K, Kwon H, Kim S, et al. Human amniotic fluid‐derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007;40(1):75-90. [DOI:10.1111/j.1365-2184.2007.00414.x] [PMID] [PMCID]
16. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PloS one 2011;6(10):e26535. [DOI:10.1371/journal.pone.0026535] [PMID] [PMCID]
17. Lai D, Wang F, Chen Y, Wang L, Wang Y, Cheng W. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC Dev Biol 2013;13:34. [DOI:10.1186/1471-213X-13-34] [PMID] [PMCID]
18. Loukogeorgakis SP, De Coppi P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2017;35(7):1663-73. [DOI:10.1002/stem.2553] [PMID]
19. int Anker PS, Scherjon SA, Kleijburg-Van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4):1548-9. [DOI:10.1182/blood-2003-04-1291] [PMID]
20. Walther G, Gekas J, Bertrand OF. Amniotic stem cells for cellular cardiomyoplasty: promises and premises. Catheter Cardiovasc Interv 2009;73(7):917-24. [DOI:10.1002/ccd.22016] [PMID]
21. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25(1):100-6. [DOI:10.1038/nbt1274] [PMID]
22. Siegel N, Rosner M, Hanneder M, Valli A, Hengstschläger M. Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev 2007;3(4):256-64. [DOI:10.1007/s12015-007-9003-z] [PMID]
23. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105(4):1815-22. [DOI:10.1182/blood-2004-04-1559] [PMID]
24. Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells 2016;34(2):483-92. [DOI:10.1002/stem.2254] [PMID]
25. Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 2014;54(5):1418-37. [DOI:10.1111/trf.12421] [PMID] [PMCID]
26. Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front Immunol 2019;10:1191. [DOI:10.3389/fimmu.2019.01191] [PMID] [PMCID]
27. Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplant 2018;27(1):31-44. [DOI:10.1177/0963689717742819] [PMID] [PMCID]
28. Kim KY, Kim SU, Leung PC, Jeung EB, Choi KC. Influence of the prodrugs 5‐fluorocytosine and CPT‐11 on ovarian cancer cells using genetically engineered stem cells: tumor‐tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci 2010;101(4):955-62. [DOI:10.1111/j.1349-7006.2009.01485.x] [PMID]
29. Kim SU, Jeung EB, Kim YB, Cho MH, Choi KC. Potential tumor-tropic effect of genetically engineered stem cells expressing suicide enzymes to selectively target invasive cancer in animal models. Anticancer Res 2011;31(4):1249-58. [Google Scholar]
30. Yi B-R, Kang N-H, Hwang K-A, Kim SU, Jeung E-B, Kim Y-B, et al. Genetically engineered stem cells expressing cytosine deaminase and interferon-β migrate to human lung cancer cells and have potentially therapeutic anti-tumor effects. Int J Oncol 2011;39(4):833-9. [Google Scholar]
31. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006;113(7)::1005-14. [DOI:10.1161/CIRCULATIONAHA.105.588954] [PMID] [PMCID]
32. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 2007;105(3):215-28. [DOI:10.1254/jphs.CR0070034] [PMID]
33. Phermthai T, Odglun Y, Julavijitphong S, Titapant V, Chuenwattana P, Vantanasiri C, et al. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol 2010;11(1):79. [DOI:10.1186/1471-2121-11-79] [PMID] [PMCID]
34. Sessarego N, Parodi A, Podesta M, Benvenuto F, Mogni M, Raviolo V, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 2008;93(3):339-46. [DOI:10.3324/haematol.11869] [PMID]
35. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, et al. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 2009;280(1):31-7. [DOI:10.1016/j.canlet.2009.02.011] [PMID] [PMCID]
36. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008;269(1):67-77. [DOI:10.1016/j.canlet.2008.04.032] [PMID]
37. Gholizadeh-Ghaleh Aziz S, Fardyazar Z, Pashaiasl M. The human amniotic fluid mesenchymal stem cells therapy on, SKOV3, ovarian cancer cell line. Mol Genet Genomic Med 2019;7(7):e00726. [DOI:10.1002/mgg3.726] [PMID] [PMCID]
38. Cho JA, Park H, Kim HK, Lim EH, Seo SW, Choi JS, et al. Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer 2009;115(2):311-23. [DOI:10.1002/cncr.24032] [PMID]
39. Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, et al. Bidirectional and Opposite Effects of Naive Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019;9(4):539-58. [DOI:10.15171/apb.2019.063] [PMID] [PMCID]
40. Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PloS one 2013;8(8):e69515. [DOI:10.1371/journal.pone.0069515] [PMID] [PMCID]
41. Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 2021;12(1):126. [DOI:10.1186/s13287-021-02196-x] [PMID] [PMCID]
42. Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, et al. Cytokines secreted by human Wharton's jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol Lett 2019;17(5):4521-31. [DOI:10.3892/ol.2019.10094] [PMID] [PMCID]
43. Reza AMMT, Choi Y-J, Yasuda H, Kim J-H. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 2016;6:38498. [DOI:10.1038/srep38498] [PMID] [PMCID]
44. Serhal R, Saliba N, Hilal G, Moussa M, Hassan GS, El Atat O, et al. Effect of adipose-derived mesenchymal stem cells on hepatocellular carcinoma: In vitro inhibition of carcinogenesis. World J Gastroenterol. 2019;25(5):567-83. [DOI:10.3748/wjg.v25.i5.567] [PMID] [PMCID]
45. Rahmatizadeh F, Pashaei-Asl F, Dehcheshmeh MM, Rahbar S, LaleAtaei M, Aziz SG-G, et al. Reduction in the Viability of Human Cervical Cancer HeLa Cell Line via Indirect Co-culture With Amniotic Fluid-Derived Mesenchymal Stem Cells. International Journal Of Women's Health And Reproduction Sciences 2020; 8:319-27. [DOI:10.15296/ijwhr.2020.51]
46. Abolghasemi R, Ebrahimi-Barough S, Mohamadnia A, Ai J. Synergistic inhibitory effect of human umbilical cord matrix mesenchymal stem cells-conditioned medium and atorvastatin on MCF7 cancer cells viability and migration. Cell Tissue Bank 2022:1-23. [DOI:10.1007/s10561-021-09984-y] [PMID] [PMCID]
47. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3(5):330-8. [DOI:10.1038/nrc1074] [PMID]
48. 48 Hong I-S, Lee H-Y, Kang K-S. Mesenchymal stem cells and cancer: friends or enemies? Mutat. Res. Fundam Mol Mech Mutagen 2014;768:98-106. [DOI:10.1016/j.mrfmmm.2014.01.006] [PMID]
49. Reza AT, Shiwani S, Singh N, Lohakare J, Lee S, Jeong D, et al. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cell Dev Biol Anim 2014;50(3):194-206. [DOI:10.1007/s11626-013-9690-5] [PMID]
50. Nomoto-Kojima N, Aoki S, Uchihashi K, Matsunobu A, Koike E, Ootani A, et al. Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell Tissue Res 2011;344(2):287-98. [DOI:10.1007/s00441-011-1144-3] [PMID]
51. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008;18(4):500-7. [DOI:10.1038/cr.2008.40] [PMID]
52. Wu XB, Liu Y, Wang GH, Xu X, Cai Y, Wang HY, et al. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-kappaB activation. Sci Rep 2016;6:21420. [DOI:10.1038/srep21420] [PMID] [PMCID]
53. Riedel R, Pérez-Pérez A, Carmona-Fernández A, Jaime M, Casale R, Dueñas JL, et al. Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 2019;9(1):14193. [DOI:10.1038/s41598-019-50648-5] [PMID] [PMCID]
54. Kim YS, Hwang KA, Go RE, Kim CW, Choi KC. Gene therapy strategies using engineered stem cells for treating gynecologic and breast cancer patients (Review). Oncol Rep 2015;33(5):2107-12. [DOI:10.3892/or.2015.3846] [PMID]
55. Kang NH, Yi BR, Lim SY, Hwang KA, Baek YS, Kang KS, et al. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts. Int J Oncol 2012;40(6):2022-8. [Google Scholar]
56. Lazzarini R, Olivieri F, Ferretti C, Mattioli-Belmonte M, Di Primio R, Orciani M. mRNAs and miRNAs profiling of mesenchymal stem cells derived from amniotic fluid and skin: the double face of the coin. Cell Tissue Res 2014;355(1):121-30. [DOI:10.1007/s00441-013-1725-4] [PMID]
57. Lazzarini R, Sorgentoni G, Caffarini M, Sayeed MA, Olivieri F, Di Primio R, et al. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid. Int J Immunopathol Pharmacol 2016;29(3):523-8. [DOI:10.1177/0394632015610228] [PMID] [PMCID]
58. Shen SQ, Huang LS, Xiao XL, Zhu XF, Xiong DD, Cao XM, et al. miR-204 regulates the biological behavior of breast cancer MCF-7 cells by directly targeting FOXA1. Oncol Rep;38(1):368-76. [DOI:10.3892/or.2017.5644] [PMID]
59. Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, et al. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019;139:1-15. [DOI:10.1016/j.freeradbiomed.2019.05.017] [PMID]
60. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta Bioenerg 2011;1812(5):592-601. [DOI:10.1016/j.bbadis.2011.02.002] [PMID]
61. Korkmaz-Icoz S, Zhou P, Guo Y, Loganathan S, Brlecic P, Radovits T, et al. Mesenchymal stem cell-derived conditioned medium protects vascular grafts of brain-dead rats against in vitro ischemia/reperfusion injury. Stem Cell Res Ther 2021;12(1):144. [DOI:10.1186/s13287-021-02166-3] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.