Volume 32, Issue 8 (November 2021)                   Studies in Medical Sciences 2021, 32(8): 607-618 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5371-en.html
Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran (Corresponding Author) , Sanadgol.n@gmail.com
Abstract:   (1003 Views)
Background & Aims: Alzheimer’s disease (AD) is the main form of dementia and neurodegenerative disorder among the elderly. In this study, we evaluated the activation of protein kinase RNA-like ER kinase (PERK) by monitoring the expression patterns of activating transcription factor 4 (ATF4) during aging in a transgenic Alzheimer's model.
Materials & Methods: The human beta-amyloid (hAβ42) mutant gene was expressed in Drosophila by GAL4/UAS system and male flies with UAS-Aβ42 were mated with elav-GAL4 or Ok107-GAL4 female to model AD. The model was confirmed by assessment of performance learning index (PLI) of larvae from first-generation (Ok107) and adult fly’s eyes structure (elav). The expression of ATF4 was evaluated on the 10th, 20th, and 30th days by real-time PCR.
Results: The AD model was confirmed by decreasing PLI of larvae (p < 0.05) and degeneration of fly’s eyes structure (p < 0.01). We declined the activity of the GAL4-UAS system by temperature reduction (18 °C) in the first 10 days to decrease neurotoxicity and expression of hAβ42 (p < 0.05) and have the relevant model with maximum toxicity in the adult brain. Expression of ATF4 was similarly upregulated (p < 0.01) in both ages (20 and 30) of the model flies compared to the control group.
Conclusion: Given that hAβ42-induced over-expression of ATF4 is the same in different age periods and because PERK signaling is the main source of ATF4 expression, we could conclude that aging is unable to influence the activation of PERK signaling in our model. Further complimentary molecular studies will warrant the possible effects of aging in the activation of other unfolded protein response (IRE1 and ATF6) pathways during AD.
Full-Text [PDF 798 kb]   (271 Downloads)    
Type of Study: Research | Subject: Neuroscience

1. Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2020;151:104582. [DOI:10.1016/j.phrs.2019.104582] [PMID]
2. Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2020;13(4):273-94. [DOI:10.2174/1874467213666200422090135] [PMID]
3. States U, States U, Hampshire N, Carolina N, Dakota N, Carolina S, et al. Deaths : Final Data for 2016. Natl Vital Stat Reports 2018;67(5):1-76. [URL]
4. Ghaffari M, Sanadgol N, Abdollahi M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer's Disease. Mini Rev Med Chem 2020;20(15):1499-1517. [DOI:10.2174/1389557520666200513122357] [PMID]
5. Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Folia Neuropathol 2009;47(4):289-99. [PMID]
6. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2017;14:450-64. [DOI:10.1016/j.redox.2017.10.014] [PMID] [PMCID]
7. Zarini-Gakiye E, Sanadgol N, Parivar K, Vaezi G. Alpha-lipoic acid ameliorates tauopathy-induced oxidative stress, apoptosis, and behavioral deficits through the balance of DIAP1/DrICE ratio and redox homeostasis: Age is a determinant factor. Metab Brain Dis 2021;36(4):669-83. [DOI:10.1007/s11011-021-00679-7] [PMID]
8. Hashimoto S, Saido TC. Critical review: involvement of endoplasmic reticulum stress in the etiology of Alzheimer's disease. Open Biol 2018;8(4):180024. [DOI:10.1098/rsob.180024] [PMID] [PMCID]
9. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013;15(5):481-90. [DOI:10.1038/ncb2738] [PMID] [PMCID]
10. Maly DJ, Papa FR. Druggable sensors of the unfolded protein response. Nat Chem Biol 2014;10(11):892-901. [DOI:10.1038/nchembio.1664] [PMID] [PMCID]
11. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013;12(9):703-19. [DOI:10.1038/nrd3976] [PMID]
12. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 2015;348(6231):239-42.13. Nijholt DAT, Van Haastert ES, Rozemuller AJM, Scheper W, Hoozemans JJM. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol 2012;226(5):693-702. [DOI:10.1002/path.3969] [PMID]
13. Devi L, Ohno M. PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging [Internet]. 2014;35(10):2272-81. Available from: http://dx.doi.org/10.1016/j.neurobiolaging.2014.04.031 [DOI:10.1016/j.neurobiolaging.2014.04.031] [PMID] [PMCID]
14. Adams MD. The Genome Sequence of Drosophila melanogaster. Genetics 2002;161(4):1507-16. [Google Scholar]
15. Lenz S, Karsten P, Schulz JB, Voigt A. Drosophila as a screening tool to study human neurodegenerative diseases. J Neurochem 2013;127(4):453-60. [DOI:10.1111/jnc.12446] [PMID]
16. 17 Zarini-Gakiye E, Sanadgol N, Parivar K, Vaezi G. Age and Dose-dependent Effects of Alpha-lipoic Acid on Human Microtubule-associated Protein Tau-induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer's Disease. CNS Neurol Disord Drug Targets 2021;20(5):451-64. [DOI:10.2174/1871527320666210126114442] [PMID]
17. Mhatre DS. Modeling Alzheimer's Disease in Drosophila melanogaster. Drexel University; 2014. [Google Scholar]
18. Baxter SL, Allard DE, Crowl C, Sherwood NT. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP). Dis Model Mech 2014;7(8):1005-12. [DOI:10.1242/dmm.013987] [PMID] [PMCID]
19. Malik BR, Hodge JJ. Drosophila adult olfactory shock learning. J Vis Exp 2014 [Google Scholar]
20. (90):e50107. 21. Mehrabi S, Sanadgol N, Barati M, Shahbazi A, Vahabzadeh G, Barzroudi M, et al. Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metab Brain Dis 2018;33(1):107-14. [DOI:10.1007/s11011-017-0132-z] [PMID]
21. Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 2018;33(1):27-37. 23. Gauthier SA, VanHaaften E, Cherbas L, Cherbas P, Hewes RS. Cryptocephal, the Drosophila melanogaster ATF4, is a specific coactivator for ecdysone receptor isoform B2. PLoS Genet 2012;8(8):e1002883. [DOI:10.1007/s11011-017-0099-9] [PMID]
22. Ryoo HD. Drosophila as a model for unfolded protein response research. BMB Rep. 2015;48(8):445-53. [DOI:10.5483/BMBRep.2015.48.8.099] [PMID] [PMCID]
23. Malzer E, Szajewska-Skuta M, Dalton LE, Thomas SE, Hu N, Skaer H, et al. Coordinate regulation of eIF2 phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J Cell Sci 2013;126(6):1406-15. [DOI:10.1242/jcs.117614] [PMID] [PMCID]
24. Briggs DI, Defensor E, Memar Ardestani P, Yi B, Halpain M, Seabrook G, et al. Role of Endoplasmic Reticulum Stress in Learning and Memory Impairment and Alzheimer's Disease-Like Neuropathology in the PS19 and APP Swe Mouse Models of Tauopathy and Amyloidosis. eNeuro 2017;4(4):ENEURO.0025-17.2017. [DOI:10.1523/ENEURO.0025-17.2017] [PMID] [PMCID]
25. Sanadgol N, Shahraki Zahedani S, Sharifzadeh M, Khalseh R, Reza Barbari G, Abdollahi M. Recent updates in imperative natural compounds for healthy brain and nerve function: a systematic review of implications for multiple sclerosis. Current drug targets 2017; 181: 1499-1517. [DOI:10.2174/1389450118666161108124414] [PMID]
26. Inoue Y, Hara H, Mitsugi Y, Yamaguchi E, Kamiya T, Itoh A, et al. 4-Hydroperoxy-2-decenoic acid ethyl ester protects against 6-hydroxydopamine-induced cell death via activation of Nrf2-ARE and eIF2α-ATF4 pathways. Neurochem Int 2018;112:288-96. [DOI:10.1016/j.neuint.2017.08.011] [PMID]
27. Sanadgol, N., Shahraki Zahedani, S., Sharifzadeh, M., Khalseh, R., Reza Barbari, G., Abdollahi, M., 2017. Recent updates in imperative natural compounds for healthy brain and nerve function: a systematic review of implications for multiple sclerosis. Curr. Drug Targets 181, 1499-1517. [DOI:10.2174/1389450118666161108124414] [PMID]
28. Corona C, Pasini S, Liu J, Amar F, Greene LA, Shelanski ML. Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABABR Trafficking. J Neurosci 2018; 38 (27): 6102-13. [DOI:10.1523/JNEUROSCI.3350-17.2018] [PMID] [PMCID]
29. Ju SM, Jo YS, Jeon YM, Pae HO, Kang DG, Lee HS, et al. Phosphorylation of eIF2α suppresses cisplatin-induced p53 activation and apoptosis by attenuating oxidative stress via ATF4-mediated HO-1 expression in human renal proximal tubular cells. Int J Mol Med 2017;40(6):1957-64. [DOI:10.3892/ijmm.2017.3181]
30. Celardo I, Lehmann S, Costa AC, Loh SH, Miguel Martins L. dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective. Cell Death Differ 2017;24(4):638-48. [DOI:10.1038/cdd.2016.158] [PMID] [PMCID]
31. Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis 2018;112:136-48. [DOI:10.1016/j.nbd.2018.01.004] [PMID]
32. Gatta V, D'Aurora M, Granzotto A, Stuppia L, Sensi SL. Expression Changes of Genes Involved in Autophagy of the Endoplasmic Reticulum Network in Animal Models of Alzheimer's Disease. Cell Death Dis 2014;5(2):e1054. [DOI:10.1038/cddis.2014.11] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb