Volume 31, Issue 9 (December 2020)                   Studies in Medical Sciences 2020, 31(9): 690-699 | Back to browse issues page


XML Persian Abstract Print


Assistant Professor of Motor Behavior, Department of Physical Education, Rasht Branch, Islamic Azad University, Rasht, Iran (Corresponding Author) , adibsaber@iaurasht.ac.ir
Abstract:   (2471 Views)
Background & Aims: Immune system abnormalities such as inflammation, increased autoimmunity and the skewed expression of soluble mediators, including cytokines have been observed in autistic patients. The present study aimed to compare the effects of vitamin D supplementation and/or aquatic exercise training on the serum level of inflammatory cytokines, including IL-1β and IL-1RA, and stereotypic behaviors (S.B) of children with autism spectrum disorders (ASD). 
Materials & Methods: We recruited 40 children with ASD (aged 6-14) and divided them into the aquatic exercise (n = 10), vitamin D supplementary (n=10), aquatic +supplementation (n=10), and control (n=10) groups. Participants in the aquatic exercise group performed water-based activities for 10 weeks/2 sessions per week/60 min, while the participants of the supplementary group orally received 50,000 IU vitamin D3/ day, and the combined group received both exercise and supplementation, control group did not get any intervention. We evaluated the participants’ serum levels of IL-1β, IL-1RA and S.B scores at baseline and the end of the treatment.
Results: Results revealed that all three interventional approaches improved behavioral symptoms and IL-1β serum level; interestingly, only the combined intervention could significantly affect IL-1RA.
Conclusions: We concluded that both aqua-based exercise and vitamin D supplements could lead to significant improvement in serum cytokine levels and behavioral problems in children with ASD.
Full-Text [PDF 358 kb]   (1069 Downloads)    
Type of Study: Clinical trials | Subject: Exercise physiology

References
1. Estes M L, McAllister A K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015 ;16(8): 469-86.Effects of Vitamin D and/or Aquatic Exercise on IL-1β and IL-1RA Serum …. Soleyman Ansari, et al698 [DOI:10.1038/nrn3978] [PMID] [PMCID]
2. Mohammadi M R, Ahmadi N, Khaleghi A, Zarafshan H, Mostafavi S A, Kamali K., et al. Prevalence of Autism and its Comorbidities and the Relationship with Maternal Psychopathology: A National Population-Based Study. Arch Iran Med 2019; 22(10): 546-53.. [URL]
3. Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2015; 163(1): 49-55. [DOI:10.1016/j.imlet.2014.11.006] [PMID]
4. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011; 25(1): 40-5. [DOI:10.1016/j.bbi.2010.08.003] [PMID] [PMCID]
5. Heuer L S, Croen L A, Jones K L, Yoshida C K, Hansen R L, Yolken R, et al. An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: The Early Markers for Autism study. Biol Psychiatry 2019; 86(4): 255-64. [DOI:10.1016/j.biopsych.2019.04.037] [PMID] [PMCID]
6. Deverman B E, Patterson P H. Cytokines and CNS development. Neuron 2009; 64(1): 61-78. [DOI:10.1016/j.neuron.2009.09.002] [PMID]
7. Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PloS one 2011; 6(5): e20470. [DOI:10.1371/journal.pone.0020470] [PMID] [PMCID]
8. Goines P E, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol 2013; 36: 67-81. [DOI:10.1016/j.ntt.2012.07.006] [PMID] [PMCID]
9. Ansari Kolachahi S, Hojjati Zidashti Z, Elmieh A, Bidabadi E, Filli J. The relationship between the cytokines and hs-CRP levels in children with autism and their comparison with healthy ones. Medical Sciences 2019; 29(3): 240-48. [DOI:10.29252/iau.29.3.240]
10. Bahrami F, Movahedi A, Marandi S M, Abedi A. Kata techniques training consistently decreases stereotypy in children with autism spectrum disorder. Res Dev Disabil 2012, 33(4), 1183-93. [DOI:10.1016/j.ridd.2012.01.018] [PMID]
11. Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, Bautmans I. Effects of resistance training at different loads on inflammatory markers in young adults. Eur J Appl Physiol 2017; 117(3): 511-9. [DOI:10.1007/s00421-017-3548-6] [PMID]
12. Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 2005; 100(1): 93-9. [DOI:10.1016/j.ijcard.2004.08.073] [PMID]
13. Mendham A E, Duffield R, Marino F, Coutts AJ. Small-sided games training reduces CRP, IL-6 and leptin in sedentary, middle-aged men. Eur J Appl Physiol 2014; 114(11): 2289-97. [DOI:10.1007/s00421-014-2953-3] [PMID]
14. Moon S, Schmidt M, Smirnova I V, Colgrove Y, Liu W. Qigong exercise may reduce serum TNF-α levels and improve sleep in people with Parkinson's disease: A pilot study. Medicines 2017; 4(2): 23. [DOI:10.3390/medicines4020023] [PMID] [PMCID]
15. Celiberti D A, Bobo HE, Kelly KS, Harris SL, Handleman JS. The differential and temporal effects of antecedent exercise on the self-stimulatory behavior of a child with autism. Res Dev Disabil 1997; 18(2): 139-50. [DOI:10.1016/S0891-4222(96)00032-7]
16. Adib Saber F, Shojaei M, Daneshfar A, Hossein Khanzadeh A. Aquatic Exercise on Stereotypic Behaviors and Sleep Habits in Children with Autism Spectrum Disorder. Middle Eastern Journal of Disability Studies 2019; 9: 110. [URL]
17. Wang T, Shan L, Du L, Feng J, Xu Z, Staal WG, et al. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2016; 25(4): 341-50. [DOI:10.1007/s00787-015-0786-1] [PMID]
18. Neve A, Corrado A, Cantatore FP. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin Exp Med 2014; 14(3): 275-83. [DOI:10.1007/s10238-013-0249-2] [PMID]
19. Razzaghi R, Pourbagheri H, Momen-Heravi M, Bahmani F, Shadi J, Soleimani Z, et al. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complications 2017; 31(4): 766-72. [DOI:10.1016/j.jdiacomp.2016.06.017] [PMID]
20. Tabesh M, Azadbakht L, Faghihimani E, Tabesh M, Esmaillzadeh A. Calcium-vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: aStudies in Medical Sciences, Vol. 31(9), December 2020699randomized controlled clinical trial. J Clin Endocrinol Metab 2014;99(12):E2485-93. [DOI:10.1210/jc.2014-1977] [PMID]
21. Zheng S, Wang B, Han W, Zhu Z, Wang X, Jin X, et al. Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial. Br J Nutr 2018; 120(1): 41-8. [DOI:10.1017/S0007114518001174] [PMID]
22. Feng J, Shan L, Du L, Wang B, Li H, Wang W, et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutr Neurosci 2017; 20(5): 284-90. [DOI:10.1080/1028415X.2015.1123847] [PMID]
23. Kerley CP, Power C, Gallagher L, Coghlan D. Lack of effect of vitamin D3 supplementation in autism: a 20-week, placebo-controlled RCT. Arch Dis Child 2017; 102(11): 1030-6. [DOI:10.1136/archdischild-2017-312783] [PMID]
24. Mostafa G A, Al-Ayadhi LY. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J Neuroinflammation 2012; 9(1): 201. [DOI:10.1186/1742-2094-9-201] [PMID] [PMCID]
25. Worley JA, Matson JL. Diagnostic instruments for the core features of ASD. In International handbook of autism and pervasive developmental disorders (pp. 215-231). New York, NY: Springer; 2011. [DOI:10.1007/978-1-4419-8065-6_13]
26. Van Etten E, Decallonne B, Bouillon R, Mathieu C. NOD bone marrow-derived dendritic cells are modulated by analogs of 1, 25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 2004; 89: 457-9. [DOI:10.1016/j.jsbmb.2004.03.017] [PMID]
27. Chin K, Zhao D, Tibuakuu M, Martin S S, Ndumele CE, Florido R, et al. Physical activity, vitamin D, and incident atherosclerotic cardiovascular disease in whites and blacks: the ARIC study. J Clin Endocrinol Metab 2017; 102(4): 1227-36. [DOI:10.1210/jc.2016-3743] [PMID] [PMCID]
28. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo M A. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011;11(9): 607-15. [DOI:10.1038/nri3041] [PMID]
29. Petersen A M W, Pedersen B K. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98(4): 1154-62. [DOI:10.1152/japplphysiol.00164.2004] [PMID]
30. Wagenmakers AJ, Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 2006;42:105-17. [DOI:10.1042/bse0420105] [PMID]
31. Vonder Hulls D S, Walker LK, Powell J M. Clinicians' perceptions of the benefits of aquatic therapy for young children with autism: A preliminary study. Phys Occup Ther Pediatr 2006; 26(1-2): 13-22. [DOI:10.1080/J006v26n01_03]
32. Jia F, Shan L, Wang B, Li H, Feng J, Xu Z, et al. Fluctuations in clinical symptoms with changes in serum 25 (OH) vitamin D levels in autistic children: three cases report. Nutr Neurosci 2019; 22(12): 863-6. [DOI:10.1080/1028415X.2018.1458421] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.