Volume 31, Issue 5 (August 2020)                   Studies in Medical Sciences 2020, 31(5): 354-363 | Back to browse issues page

XML Persian Abstract Print

Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Razi University, Kermanshah, Iran (Corresponding Author) , m.darbemamieh@razi.ac.ir
Abstract:   (2718 Views)
Background & Aims: The anti-cancer effects of insect larvae were demonstrated in cancer cells in traditional medicine. Identification and extraction of anticancer compounds from insects can reduce the problems of cancer patients. The aim of this study is to investigate the anti-proliferative and apoptotic properties of different concentrations of aqueous and ethanolic extracts of Tenebrio molitor larvae on breast cancer cells (Mcf-7).
Material & Methods: The larvae used in this study were reared at the research insect farm of Razi University. Larvae were frozen and then dried before starting pupation. Their aqueous and ethanolic extracts were derived. Concentrations of 20, 40, 80, and 160 μg/ml of each extract were added to the cell culture. The group without extract was considered as control. Anti-proliferative activity was evaluated by MTT assay and apoptosis by acridine orange-ethidium bromide staining.
Results: Application of ethanolic extract in low concentrations (20, 40 μg/ml) to the culture had the greatest cell cytotoxicity effect compared to aqueous extract with same concentration (p<0.05). In addition, the 40 μg/ml concentration of aqueous extract had a significant effect on cell cytotoxicity in comparison to the 20 μg/ml concentration (p<0.05). However, high concentrations, 120 μgr/ml of aqueous and ethanolic extracts, significantly increased the proliferation compared to the control (p>0.05). Similar results were observed in apoptosis assay.
Conclusion: In conclusion, larval ethanolic extract appeared to have a better effect on cytotoxicity and apoptosis of breast cancer cells in comparison to the aqueous extracts. Investigations for finding new and efficient natural anti-cancer extracts can improve our knowledge about natural-based medicines with fewer side effects.
Full-Text [PDF 2740 kb]   (806 Downloads)    
Type of Study: Research | Subject: Oncology

1. Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245: 205-22. [DOI:10.1016/j.foodchem.2017.10.087] [PMID]
2. Sulaiman G M. In vitro study of molecular structure and cytotoxicity effect of luteolin in the human colon carcinoma cellsEuropean Food Res Tech 2015;241: 83-90. [DOI:10.1007/s00217-015-2436-8]
3. Zhang J, Wen C, Duan Y, Zhang H, Ma H. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol 2019;132: 906-14. [DOI:10.1016/j.ijbiomac.2019.04.020] [PMID]
4. Yang XM, Wang YF, Li YY, Ma H L. Thermal stability of ginkgolic acids from Ginkgo biloba and the effects of ginkgol C17:1 on the apoptosis and migration of SMMC7721 cells. Fitoterapia 2014; 98: 66-76. [DOI:10.1016/j.fitote.2014.07.003] [PMID]
5. WHO. 2020. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ [Google Scholar]
6. Engel MS, Grimaldi DA. New light shed on the oldest insect. Nature 2004;427:627-30. [DOI:10.1038/nature02291] [PMID]
7. Feng Y, Chen X M, Zhao M, He Z, Sun L, Wang C Y, et al. Edible insects in China: utilization and prospects. Insect Sci 2017; 25(2): 184-98. [DOI:10.1111/1744-7917.12449] [PMID]
8. Farkya S, Bisaria V S, Srivastava A K. Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biotechnol 2004;65:504-19. [DOI:10.1007/s00253-004-1680-9] [PMID]
9. Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents 2005; 5:29-46. [DOI:10.2174/1568011053352550] [PMID]
10. Xu CQ, Brone B, Wicher D, Bozkurt O, Lu WY, Huys I, et al.. BmBKTxl, a novel Ca2+-activated K § channel blocker purified from the Asian scorpion Buthus martensi Karsch. J Biol Chem 2004; 279 (33): 34562-9. [DOI:10.1074/jbc.M312798200] [PMID]
11. Park CW, Kim J H, Kim KM, Hwang J S, Kang SW, Kang HS, et al. Evidence for brain-derived neurotrophic factor-like neuropeptide in brain of the silk moth Bombyx mori during postembryonic periods. Peptides 2004; 25: 1891-7. [DOI:10.1016/j.peptides.2004.07.005] [PMID]
12. Fu YJ, Chai BF, Wang W, Zhi H, Yin LT, Liang AH. Expression and purification of the BmK Mm2 neurotoxin from the scorpion Buthus martensii Karsch and its biological activity test. Protein Expr Purif 2004; 38: 45-50. [DOI:10.1016/j.pep.2004.06.038] [PMID]
13. Vergote D, Sautiere PE, Vandenbulcke F, Vieau D, Mitta G, Macagno ER, et al. Up-regulation of neurohemerythrin expression in the central nervous system of the medicinal leech, Hirudo medicinalis, following septic injury. J Biol Chem 2004;279: 43828-37. [DOI:10.1074/jbc.M403073200] [PMID]
14. Gao Y, Wang D, Xu M, Shi S, Xiong J. Toxicological characteristics of edible insects in China: A historical review. Food Chem Toxicol 2018; 119: 237-51. [DOI:10.1016/j.fct.2018.04.016] [PMID]
15. Watt JC. A revised subfamily classification of Tenebrionidae (Coleoptera). New Zealand journal of zoology 1974;1 (4): 381-452. [DOI:10.1080/03014223.1974.9517846]
16. Han SR, Yun EY, Kim JY, Hwang JS, Jeong EJ, Moon KS. Evaluation of genotoxicity and 28-day oral dose toxicity on freeze-dried powder of Tenebrio molitor larvae (Yellow Mealworm). Toxicol Res 2014;30: 121-30. [DOI:10.5487/TR.2014.30.2.121] [PMID] [PMCID]
17. Arbab A. Industrial insects: Yellow mealworm, Introduction, rearing, processing, usages. Islamic Azad University publication center. 2018; 206pp. (Persian) [URL]
18. Paul A, Frederich M, Caparros R, Alabi T, Malik P, Uyttenbroeck R, et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J Asia-Pac Entomol 2017;20: 337-40. [DOI:10.1016/j.aspen.2017.02.001]
19. Seo M, Kim J, Moon S, Hwang J, Kim M. Intraventricular administration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet - induced obesity. Nutr Res 2017; 44: 18-26. [DOI:10.1016/j.nutres.2017.05.011] [PMID]
20. Lee JE, Lee AJ, Jo DE, Cho JH, Youn K, Yun EY, et al. Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma. J Korean Soc Food Sci Nutr 2015;44(2): 200-7. [DOI:10.3746/jkfn.2015.44.2.200]
21. Liu Y, Cheng J, Zhao R, Fan H. Isolation and purification of antibacterial peptides with anti ⁃ K562 activity from the Tenebrio molitor Linnaeus larvae. Chinese J Vector Biol Cont 2009; 20: 565-8. [Google Scholar]
22. Crespoa R, Villaverdea ML, Girotti JR, Güerci A, Juárez MP, de Bravo MG. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. J Ethnopharmacol 2011 14;136(1):204-9. [DOI:10.1016/j.jep.2011.04.056] [PMID]
23. Yoo YC, Shin BH, Hong JH, Lee J, Chee HY, Song KS, et al. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch Pharm Res 2007; 30(3):361-5. [DOI:10.1007/BF02977619] [PMID]
24. Li W, Xie L, Chen Zh, Zhu Y, Sun Y, Miao Y, et al. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 2010;101: 1226-33. [DOI:10.1111/j.1349-7006.2010.01523.x] [PMID]
25. Kuo J, Chu Y, Yang J, Lin J, Lai K, Kuo H, et al. Cantharidin induces apoptosis in human bladder cancer TSGH8301 cells through mitochondria-dependent signal pathways, Int J Oncol 2010; 37(5):1243-50. [DOI:10.3892/ijo_00000775]
26. Wu RA, Ding Q, Lu H, Tan H, Sun N, Wang K, et al. Caspase 3-mediated cytotoxicity of mealworm larvae (Tenebrio molitor) oil extract against human hepatocellular carcinoma and colorectal adenocarcinoma. J Ethnopharmacol 2020;250:112438. [DOI:10.1016/j.jep.2019.112438] [PMID]
27. Huang F, Yang Z, Yu D, Wang J, Li R, Ding G. Sepia Ink Oligopeptide Induces Apoptosis in Prostate Cancer Cell Lines via Caspase-3 Activation and Elevation of Bax/Bcl-2 Ratio. Mar Drugs 2012;10: 2153-65. [DOI:10.3390/md10102153] [PMID] [PMCID]
28. Ribble D, Goldstein NB, Norris DA, Shellman YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 2005; 10:5-12. [DOI:10.1186/1472-6750-5-12] [PMID] [PMCID]
29. Jajić I, Popović A, Urošević M, Krstović S, Petrović M, Guljaš D. Chemical Composition of Mealworm Larvae (Tenebrio molitor) Reared in Serbia. Contemp Agric 2019; 68(1-2): 23-7. [DOI:10.2478/contagri-2019-0005]
30. Yoo J, Hwang JS, Goo TW, Yun EY. Comparative analysis of nutritional and harmful components in the Korean and Chinese mealworms (Tenebrio molitor). J Kor Soc Food Sci Nutr 2013;42(2): 249-54. [DOI:10.3746/jkfn.2013.42.2.249]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.