Volume 31, Issue 5 (August 2020)                   Studies in Medical Sciences 2020, 31(5): 381-397 | Back to browse issues page

XML Persian Abstract Print


Associate Professor, Medical Engineering, Faculty of Modern Science and Technology, University of Tehran, Tehran, Iran (Corresponding Author) , bahman.vahidi@ut.ac.ir
Abstract:   (2443 Views)
Background & Aims: Preterm labor is a complex process affected by several factors through which cervical failure plays a vital role in some patients. During the pregnancy, the proper cervical function is required to maintain the fetus in the uterus. Softness and shortness of the cervix are two main causes of preterm delivery.  The aim of this study was to investigate the effect of the cervical softening and deformation of amniotic sac on mechanical function of the cervix under the organ mechanical environment.
Materials & Methods: A 3D model of the uterus, cervix, and fetal membrane of a pregnant woman was built based on MR imaging in order to analyze the mechanical function of the uterus and cervix under physiological loading of pregnancy. In this study, to describe the collagenous tissue of the uterus and cervix, a hyperelastic composite material with a neo-Hookean ground substance assuming a continuous random fiber distribution was used. The effect of cervical remodeling on preterm delivery was studied using two types of fibers, pregnant, soft, and deformed, and non-pregnant, rigid and non-deformed. Also, the geometrical effects of amniotic sac have been studied by assuming two different geometries for amniotic sac which are deformed, and non-deformed. Behavior of tissue deformation resulted from stress, changes in the geometry of the organs and the interaction between the uterus, cervix and fetal membrane have been studied using finite element method and patient-specific geometry based on previous experimental and numerical investigations.
Results: The amount of stress obtained at the front part of the internal mouth of the cervix of the basic model, the part where the highest concentration of stress and deformation occurred, as predicted by previous studies is approximately 5 kPa. In other models, the effective stress is less than this value, and is at least equal to 5.3 kPa. The strain rate in the soft cervical model and the deformed amniotic sac was higher than other models because both causes of early delivery exist simultaneously.
Conclusion: The present model shows that changes in the geometry of amniotic sac increase the load on the cervix and initiates the funneling. Funneling is a process in which the initial dilation of the cervix causes the production of chemical signals by the cervix smooth muscle cells causing further cervical dilatation and ultimately cervical insufficiency, which is one of the most important causes of preterm labor.
Full-Text [PDF 4687 kb]   (774 Downloads)    
Type of Study: Research | Subject: General

References
1. 1 Lorenz JM. The outcome of extreme prematurity. Semin Perinatol 2001; 25 (5): 348-59. [DOI:10.1053/sper.2001.27164] [PMID]
2. 2 Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012;379 (9832): 2162-72. [DOI:10.1016/S0140-6736(12)60820-4] [PMID]
3. 3 Tullus K. Vesicoureteric reflux in children. Lancet 2015; 385(9965): 371-9. [DOI:10.1016/S0140-6736(14)60383-4] [PMID]
4. 4 Teune MJ, Bakhuizen S, Bannerman CG, Opmeer BC, Van Kaam AH, Van Wassenaer AG, et al.A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol 2011; 205( 4): 374.e1-374.e9. [DOI:10.1016/j.ajog.2011.07.015] [PMID]
5. 5 Vogel JP, Oladapo OT, Manu A, Gülmezoglu AM, Bahl R. New WHO recommendations to improve the outcomes of preterm birth. Lancet Glob Heal 2015; 3 (10): e589-e590. [DOI:10.1016/S2214-109X(15)00183-7] [PMID]
6. 6 Barros FC, Papageorghiou AT, Victora CG, Noble JA, Pang R, Iams J, et al. The distribution of clinical phenotypes of preterm birth syndrome implications for prevention. JAMA Pediatr 2015; 169(3): 220-9. [DOI:10.1001/jamapediatrics.2014.3040] [PMID]
7. 7 Jaroensutasinee M, Jaroensutasinee K. Sexual size dimorphism and male contest in wild siamese fighting fish. J Fish Biol 2001; 59(6):1614-21. [DOI:10.1111/j.1095-8649.2001.tb00225.x]
8. 8 Challis JR, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine control of birth at term and preterm.Endocrine Rev 2000; 21(5): 514-50. https://doi.org/10.1210/edrv.21.5.0407 [DOI:10.1210/er.21.5.514] [PMID]
9. 9 Shynlova O, Chow M, Lye SJ. Expression and organization of basement membranes and focal adhesion proteins in pregnant myometrium is regulated by uterine stretch. Reprod Sci 2009; 16(10):960-9. [DOI:10.1177/1933719109338220] [PMID]
10. 10 Norwitz ER, Robinson JN, Challis JR. The Control of Labor. N Engl J Med 1999; 341(9): 660-6. [DOI:10.1056/NEJM199908263410906] [PMID]
11. 11 Romero R, Espinoza J, Erez O, Hassan S. The role of cervical cerclage in obstetric practice: Can the patient who could benefit from this procedure be identified? Am J Obstet Gynecol 2006; 194(1): 1-9. [DOI:10.1016/j.ajog.2005.12.002] [PMID] [PMCID]
12. 12 Vidaeff AC, Ramin SM. From concept to practice: The recent history of preterm delivery prevention. Part I: Cervical competence. Am J Perinatol 2006; 23(1): 3-13. [DOI:10.1055/s-2005-923437] [PMID]
13. 13 Myers KM, Socrate S, Paskaleva A, House M. A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue. J Biomech Eng 2010; 132 (2): 021003. [DOI:10.1115/1.3197847] [PMID]
14. 14 Akins ML, Luby-Phelps K, Bank RA, Mahendroo M. Cervical Softening During Pregnancy: Regulated Changes in Collagen Cross-Linking and Composition of Matricellular Proteins in the Mouse. Biol Reprod 2011; 84 (5): 1053-62. [DOI:10.1095/biolreprod.110.089599] [PMID] [PMCID]
15. 15 Barone WR, Feola AJ, Moalli PA, Abramowitch SD. The effect of pregnancy and postpartum recovery on the viscoelastic behavior of the rat cervix. J Mech Med Biol 2012; 12 (1): 12500091-17. [DOI:10.1142/S0219519412004399] [PMID] [PMCID]
16. 16 Word RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: Mechanisms and current concepts. Semin Reprod Med 2007; 25(1): 69-79. [DOI:10.1055/s-2006-956777] [PMID]
17. 17 Hee L, Liao D, Sandager P, Gregersen H, Uldbjerg N. Cervical stiffness evaluated in vivo by Endoflip in pregnant women. PLoS One 2014; 9 (3): e91121. [DOI:10.1371/journal.pone.0091121] [PMID] [PMCID]
18. 18 Mazza E, Nava A, Bauer M, Winter R, Bajka M, Holzapfel GA. Mechanical properties of the human uterine cervix: An in vivo study. Med Image Anal 2006; 10(2): 125-36. [DOI:10.1016/j.media.2005.06.001] [PMID]
19. 19 Fernandez M, House M, Jambawalikar S, Vink J, Zork N, Wapner R, et al. Biomechanical simulations of pregnancy: The effects of collagen stiffness and membrane adhesion on cervical deformation and shortening. Reprod Sci 2015; 22: 326A-327A.
20. 20 Gedikbasi A, Yücel B, Arslan O, Giris M, Gedikbasi A, Abbasoglu SD. Dynamic collagen changes in cervix during the first trimester and decreased collagen content in cervical insufficiency. J Matern Neonatal Med 2016; 29(18): 2968-72. [DOI:10.3109/14767058.2015.1109623] [PMID]
21. Mahmoud H, Wagoner Johnson A, Chien EK, Poellmann MJ, McFarlin B. System-Level Biomechanical Approach for the Evaluation of Term and Preterm Pregnancy Maintenance. J Biomech Eng 2013; 135 (2): 021009. [DOI:10.1115/1.4023486] [PMID] [PMCID]
22. Fernandez M, House M, Jambawalikar S, Zork N, Vink J, Wapner R, et al. Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI. Comput Methods Biomech Biomed Engin 2016; 19(4): 404-17. [DOI:10.1080/10255842.2015.1033163] [PMID] [PMCID]
23. Zlatnik FJ, Burmeister LF. Interval evaluation of the cervix for predicting pregnancy outcome and diagnosing cervical incompetence. J Reprod Med 1993; 38 (5): 365-9. [PMID]
24. Kiwi R, Neuman MR, Merkatz IR, Selim MA, Lysikiewicz A. Determination of the Elastic Properties of the Cervix. Obstet Gynecol 1998; 71 (4): 568-74. [PMID]
25. Westervelt AR, Fernandez M, House M, Vink J, Nhan-Chang CL, Wapner R, et al. A Parameterized Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy. J Biomech Eng 2017; 139 (5): 051004. [DOI:10.1115/1.4036259] [PMID] [PMCID]
26. House M, McCabe R, Socrate S. Using imaging-based, three-dimensional models of the cervix and uterus for studies of cervical changes during pregnancy. Clin Anat 2013; 26 (1):97-104. [DOI:10.1002/ca.22183] [PMID]
27. Hashemi RH, Bradley WG, Lisanti CJ. MRI : the basics. Lippincott Williams & Wilkins; 2010. [URL]
28. "Altair HyperMeshTutorials," Altair Engineering, Inc., pp. 1-474, 2001.
29. Sokol E. Clinical Anatomy of the Uterus, Fallopian Tubes, & Ovaries. Glob Libr Women's Med 2009; 2228: 1-12. [URL]
30. 30 House M, Socrate S. The cervix as a biomechanical structure. Ultrasound Obst Gyn 2006; 28 (6): 745-9. [DOI:10.1002/uog.3850] [PMID]
31. Vink JY, Qin S, Brock CO, Zork NM, Feltovich HM, Chen X, et al. A new paradigm for the role of smooth muscle cells in the human cervix. Am J Obstet Gynecol 2016; 215 (4):478-e1. [DOI:10.1016/j.ajog.2016.04.053] [PMID]
32. Basar Y, Weichert D, Petrolito J. Erratum: Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts. Appl Mech Rev 2002; 55 (1): B20. [DOI:10.1115/1.1467027]
33. Myers KM, Hendon CP, Gan Y, Yao W, Yoshida K, Fernandez M, et al. A continuous fiber distribution material model for human cervical tissue. J Biomech 2015; 48 (9): 1533-40. [DOI:10.1016/j.jbiomech.2015.02.060] [PMID] [PMCID]
34. Conrad JT, Johnson WL, Kuhn WK, Hunter Jr CA. Passive stretch relationships in human uterine muscle. Am J Obstet Gynecol 1996; 96 (8): 1055-9. [DOI:10.1016/0002-9378(66)90513-8] [PMID]
35. Bürzle W, Mazza E, Moore JJ. About Puncture Testing Applied for Mechanical Characterization of Fetal Membranes. J Biomech Eng 2014; 136 (11): 111009. [DOI:10.1115/1.4028446] [PMID]
36. Benson-Martin J, Zammaretti P, Bilic G, Schweizer T, Portmann-Lanz B, Burkhardt T, et al. The Young's modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol 2006; 128(1-2): 103-7. [DOI:10.1016/j.ejogrb.2005.12.011] [PMID]
37. S. Maas, D. Rawlins, J. Weiss, and G. Ateshian, "FEBio User's Manual, Version 2.6." p. 281, 2016.
38. "PatEdu.com : Transvaginal Cerclage." Online Available: http://www.patedu.com/english/interactive/transvaginal-cerclage/section3_page2. [URL]
39. Cunningham F, Leveno K, Bloom S, Spong CY, Dashe J. Williams obstetrics.McGraw-Hill Medical; 2010. [URL]
40. Nuthalapaty FS, Rouse DJ, Owen J. The association of maternal weight with cesarean risk, labor duration, and cervical dilation rate during labor induction. Obstet Gynecol; 103(3): 452-6. [PMID]
41. 41 Fisk NM, Ronderos‐Dumit D, Tannirandorn Y, Nicolini U, Talbert D, Rodeck CH. Normal amniotic pressure throughout gestation. BJOG An Int J Obstet Gynaecol 1992; 99(1):18-22. [DOI:10.1111/j.1471-0528.1992.tb14385.x] [PMID]
42. 42 House M, Kelly J, Klebanov N, Yoshida K, Myers K, Kaplan DL. Mechanical and Biochemical Effects of Progesterone on Engineered Cervical Tissue. Tissue Eng Part A 2018; 24(23-24): 1765-74. [DOI:10.1089/ten.tea.2018.0036] [PMID] [PMCID]
43. 43 Uldbjerg N, Ekman G, Malmström A, Olsson K, Ulmsten U. Ripening of the human uterine cervix related to changes in collagen, glycosaminoglycans, and collagenolytic activity. Am J Obstet Gynecol 1983; 147(6): 662-6. [DOI:10.1016/0002-9378(83)90446-5] [PMID]
44. 44 Vink J, Qin S, Praditpan P, Ananth CV, Yoshida K, Myers K, et al. Human cervical smooth muscle stretch increases matrix metalloproteinase secretion: a new mechanism to explain premature cervical remodeling. Am J Obstet Gynecol 2016; 214(1): S122. [DOI:10.1016/j.ajog.2015.10.238]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.