Volume 31, Issue 5 (August 2020)                   Studies in Medical Sciences 2020, 31(5): 398-409 | Back to browse issues page

XML Persian Abstract Print


Assistant Professor, Department of Sport Physiology, School of Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran (Corresponding Author) , khosrojalali@gmail.com
Abstract:   (2168 Views)
Background & Aims: The aim of this study was to investigate the effect of 8 weeks of aerobic exercise with Nano eugenol supplementation on inflammatory factors of TNF-a and IL-1B and histological changes of dorsal root ganglion in diabetic rats.
Materials & Methods: 25 Wistar 8-week-old male rats were divided into 5 groups: Normal control group, Diabetic control group (Model), Diabetic + exercise group (Model + Exe), Diabetic group + Nano vaginal (Model + Nano), and Diabetic + exercise training + nano eugenol (Model + Exe + Nano). The diabetes model was induced by peritoneal injection of streptozotocin to the respective groups. The eugenol supplement was also gavaged to the supplement groups. Exercise groups also exercised for 8 weeks, 5 days a week (30 m / min).
Results: Induction of diabetes using STZ led to destruction of the tissue and cell alignment in the DRG region. Gene changes also showed that TNF-a and IL-1B inflammatory factors showed a significant increase in the DRG region in the diabetic group compared to the control group (p = 0.001 for both variables). The study of therapeutic modalities also showed that only the diabetic + exercise + nanougenol group showed a significant decrease in TNF-a compared to the diabetic group (p = 0.001).
Conclusion: According to the results of the present study, it seems that the use of nanougenol supplementation along with exercise training may be effective in controlling the neurological damage of diabetes by negatively regulating the inflammatory factor TNF-a, especially in the DRG region.
Full-Text [PDF 3097 kb]   (677 Downloads)    
Type of Study: Research | Subject: فیزیولوژی

References
1. Alkhatib A, Tuomilehto J. Lifestyle diabetes prevention. in Encyclopedia of Endocrine Diseases. Elsevier; 2019. p. 148-59. [DOI:10.1016/B978-0-12-801238-3.64358-1]
2. Mekala KC, Bertoni AG. Epidemiology of diabetes mellitus, in Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. Elsevier; 2020. p. 49-58. [DOI:10.1016/B978-0-12-814833-4.00004-6]
3. Hoogendoorn CJ, Shapira A, Roy JF, Kane NS, Gonzalez JS. Diabetes Distress and Quality of Life in Adults with Diabetes, in Behavioral Diabetes. Springer; 2020. p. 303-28. [DOI:10.1007/978-3-030-33286-0_20]
4. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes care 2017; 40(1): 136-54. [DOI:10.2337/dc16-2042] [PMID] [PMCID]
5. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharmaceutical Journal 2016; 24(5): 547-53. [DOI:10.1016/j.jsps.2015.03.013] [PMID] [PMCID]
6. Greene DA, Sima AA, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes care 1992;15(12): 1902-25. [DOI:10.2337/diacare.15.12.1902] [PMID]
7. Brownlee M, Cerami A, Vlassara H. Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes Metab Rev 1988; 4(5): 437-51. [DOI:10.1002/dmr.5610040503] [PMID]
8. Dyck PJ. Hypoxic neuropathy Does hypoxia play a role in diabetic neuropathy?: The 1988 Robert Wartenberg Lecture. Neurology1989; 39(1): 111. [DOI:10.1212/WNL.39.1.111] [PMID]
9. Cameron NE, Cotter MA. Effects of evening primrose oil treatment on sciatic nerve blood flow and endoneurial oxygen tension in streptozotocin-diabetic rats. Acta Diabetol 1994; 31(4): 220-5. [DOI:10.1007/BF00571955] [PMID]
10. Cameron NE, Cotter MA, Jack AM, Basso MD, Hohman TC. Protein kinase C effects on nerve function, perfusion, Na+, K+-ATPase activity and glutathione content in diabetic rats. Diabetologia 1999; 42(9): 1120-30. [DOI:10.1007/s001250051280] [PMID]
11. Hellweg R, Hartung HD. Hartung, Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. Journal of neuroscience research 1990; 26(2): 258-67. [DOI:10.1002/jnr.490260217] [PMID]
12. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL. Inflammation as a therapeutic target for diabetic neuropathies. Curr Diab Rep 2016; 16(3): 29. [DOI:10.1007/s11892-016-0727-5] [PMID] [PMCID]
13. Nickander KK, Schmelzer JD, Rohwer DA, Low PA. Effect of α-tocopherol deficiency on indices of oxidative stress in normal and diabetic peripheral nerve. J Neurol Sci 1994; 126(1): 6-14. [DOI:10.1016/0022-510X(94)90088-4] [PMID]
14. Luo X, Tai WL, Sun L, Pan Z, Xia Z, Chung SK, et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain 2016; 12: 1744806916636385. [DOI:10.1177/1744806916636385] [PMID] [PMCID]
15. Clark AK, Old EA, Malcangio M. Neuropathic pain and cytokines: current perspectives. Journal of pain research 2013; 6: 803. [DOI:10.2147/JPR.S53660] [PMID] [PMCID]
16. Yeh JF, Akinci A, Al Shaker M, Chang MH, Danilov A, Guillen R, et al. Monoclonal antibodies for chronic pain: A practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233. [DOI:10.1177/1744806917740233] [PMID] [PMCID]
17. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006; 52(1): 77-92. [DOI:10.1016/j.neuron.2006.09.021] [PMID] [PMCID]
18. Zhu D, Fan T, Huo X, Cui J, Cheung CW, Xia Z. Progressive increase of inflammatory CXCR4 and TNF-Alpha in the dorsal root ganglia and spinal cord maintains peripheral and central sensitization to diabetic neuropathic pain in rats. Mediators Inflamm 2019; 2019: 4856156. [DOI:10.1155/2019/4856156] [PMID] [PMCID]
19. Chatzigeorgiou A, Harokopos V, Mylona-Karagianni C, Tsouvalas E, Aidinis V, Kamper E. The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann Med 2010; 42(6): 426-38. [DOI:10.3109/07853890.2010.495951] [PMID]
20. Koneri RB, Samaddar S, Simi SM, Rao ST. Neuroprotective effect of a triterpenoid saponin isolated from Momordica cymbalaria Fenzl in diabetic peripheral neuropathy. Indian J Pharmacol 2014; 46(1): 76. [DOI:10.4103/0253-7613.125179] [PMID] [PMCID]
21. Nam H, Kim MM. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 2013; 55: 106-12. [DOI:10.1016/j.fct.2012.12.050] [PMID]
22. Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem 2006; 54(17): 6303-7. [DOI:10.1021/jf060608c] [PMID]
23. Kabuto H, Tada M, Kohno M. Eugenol (2-methoxy-4-(2-propenyl) phenol) prevents 6-hydroxydopamine-induced dopamine depression and lipid peroxidation inductivity in mouse striatum. Biol Pharm Bull 2007; 30(3): 423-7. [DOI:10.1248/bpb.30.423] [PMID]
24. Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 2009; 42(8): 1178-85. [DOI:10.1016/j.foodres.2009.06.006]
25. Liang WZ, Chou CT, Hsu SS, Liao WC, Shieh P, Kuo DH, et al.The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells. Toxicol Lett 2015; 232(1): 122-32. [DOI:10.1016/j.toxlet.2014.10.023] [PMID]
26. Karthikesan K, Pari L, Menon VP. Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin-nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2010; 2(2): 134-42. [DOI:10.1016/j.jff.2010.04.001]
27. Abd-Elsalam KA, Khokhlov AR. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci 2015; 5(2): 255-65. [DOI:10.1007/s13204-014-0398-y]
28. Esmaeili F, Rajabnejhad S, Partoazar AR, Mehr SE, Faridi-Majidi R, Sahebgharani M, et al. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm Dev Technol 2016; 21(7): 887-93. [DOI:10.3109/10837450.2015.1078353] [PMID]
29. Sobhani V, Mirdar S, Arabzadeh E, Hamidian G, Mohammadi F. High-intensity interval training-induced inflammation and airway narrowing of the lung parenchyma in male maturing rats. Comp Clin Path 2018; 27(3): 577-82. [DOI:10.1007/s00580-017-2630-0]
30. Woods JA, Vieira VJ, Keylock KT. Exercise, inflammation, and innate immunity. Immunol Allergy Clin North Am 2009; 29(2): 381-93. [DOI:10.1016/j.iac.2009.02.011] [PMID]
31. Almeida C, DeMaman A, Kusuda R, Cadetti F, Ravanelli MI, Queiroz AL, et al. Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain. Pain2015; 156(3): 504-13. [DOI:10.1097/01.j.pain.0000460339.23976.12] [PMID]
32. Dobson JL, McMillan J, Li L. Benefits of exercise intervention in reducing neuropathic pain. Front Cell Neurosci 2014; 8: 102. [DOI:10.3389/fncel.2014.00102] [PMID] [PMCID]
33. Singh PK, Baxi DB, Mukherjee R, Selvaraj J, Ramachandran AV. Diabetic amelioration by poly herbal supplement and exercise: studies on Type-I diabetic rat model. J Herb Med Toxicol 2010; 4(1): 217-26. [Google Scholar]
34. Baxi DB, Ramachandran AV, Singh PK, Mukherjee R. Evaluation on the efficacy of a Poly herbal supplement along with exercise in alleviating Dyslipidemia, Oxidative stress and hepatic and renal toxicity associated with Type-1 diabetes. 2010. [Google Scholar]
35. Arabzadeh E, Samadian Z, Tofighi A, Azar JT. Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. Sport Sci Health 2020: 1-9. [DOI:10.1007/s11332-020-00631-9]
36. Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Current protocols in pharmacology 2015; 70(1): 5-47. [DOI:10.1002/0471141755.ph0547s70] [PMID]
37. Srinivasan S, Sathish G, Jayanthi M, Muthukumaran J, Muruganathan U, Ramachandran V. Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Mol Cell Biochem 2014; 385(1-2): 159-68. [DOI:10.1007/s11010-013-1824-2] [PMID]
38. Zhang J, Xiong H. Brain tissue preparation, sectioning, and staining, in Current Laboratory Methods in Neuroscience Research. Springer; 2014. p. 3-30. [DOI:10.1007/978-1-4614-8794-4_1]
39. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system I: expression and recognition. Trends in neurosciences 1995; 18(2): 83-8. [DOI:10.1016/0166-2236(95)80029-2]
40. Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun 2007; 21(5): 686-98. [DOI:10.1016/j.bbi.2006.10.012] [PMID] [PMCID]
41. Mika J, Korostynski M, Kaminska D, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, et al. Interleukin-1alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model. Pain 2008; 138(3): 587-97. [DOI:10.1016/j.pain.2008.02.015] [PMID]
42. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716(1-3): 106-19. [DOI:10.1016/j.ejphar.2013.01.072] [PMID]
43. Leung L, Cahill CM. TNF-α and neuropathic pain-a review. Journal of neuroinflammation 2010; 7(1): 27. [DOI:10.1186/1742-2094-7-27] [PMID] [PMCID]
44. Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med 2010; 16(11): 1267. [DOI:10.1038/nm.2234] [PMID] [PMCID]
45. Rittner HL, Brack A, Stein C. Pain and the immune system. Br J Anaesth 2008; 101(1): 40-4. [DOI:10.1093/bja/aen078] [PMID]
46. Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010; 16(5): 592. [DOI:10.1038/nm.2123] [PMID] [PMCID]
47. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11(9): 607-15. [DOI:10.1038/nri3041] [PMID]
48. Mattusch F, Dufaux B, Heine O, Mertens I, Rost R. Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 2000; 21(01): 21-4. [DOI:10.1055/s-2000-8852] [PMID]
49. Prescott JF, Nicholson VM. The effects of combinations of selected antibiotics on the growth of Corynebacterium equi. J Vet Pharmacol Ther 1984; 7(1): 61-4. [DOI:10.1111/j.1365-2885.1984.tb00880.x] [PMID]
50. Pedersen BK. Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol 2009; 107(4): 1006-14. [DOI:10.1152/japplphysiol.00734.2009] [PMID]
51. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol 2005; 98(4): 1154-62. [DOI:10.1152/japplphysiol.00164.2004] [PMID]
52. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J 2003; 17(8): 884-6. [DOI:10.1096/fj.02-0670fje] [PMID]
53. Chen YW, Hsieh PL, Chen YC, Hung CH, Cheng JT. Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg 2013; 116(2): 482-90. [DOI:10.1213/ANE.0b013e318274e4a0] [PMID]
54. Chen YW, Li YT, Chen YC, Li ZY, Hung CH. Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg 2012; 114(6): 1330-7. [DOI:10.1213/ANE.0b013e31824c4ed4] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.