Volume 31, Issue 2 (May 2020)                   Studies in Medical Sciences 2020, 31(2): 75-81 | Back to browse issues page

XML Persian Abstract Print


Ph.D Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (Corresponding Author) , majiddarroudi@gmail.com
Abstract:   (4465 Views)
Background & Aims: Plants contain high antioxidant activities due to their redox and the chemical properties are affluent in secondary metabolites such as phenols, flavonoids, and other components. Rheum turkestanicum Janisch is a plant from polygonaceae that is widely used for diabetes. At this project that is a part of national thesis, relative levels of antioxidant activity, total phenols, total flavonoid, total anthocyanin, soluble and non-soluble sugar content of Rheum turkestanicum were measured.
Materials & Methods: The shoots of Rheum turkestanicum were collected and verified from Dargaz region in north-east of Iran and then they were dried at room temperature.
The aerial portion of the plant was powdered by grinding, and five grams of the herbal powder were mixed with 300 mL of deionized water and after 24 h, the resulting mixture was filtered using Whatman No. 1 filter paper. Determination of total phenol, total flavonoid, anthocyanin, soluble sugars and antioxidant properties of aqueous extract was performed by standard Folin chicaletto, aluminum chloride colorimeter, Wagner, phenolic sulfuric acid, DPPH methods using a spectrophotometer.
Results: The results of this project showed that the amount of total phenolic and flavonoid acids in Rheum turkestanicum extract was high at 123.8 and 116 mg/g dry weight, respectively. DPPH scavenging activity was observed to be 6.42 mg/g dry weight of ascorbic acid.
The results of this project showed that DPPH scavenging activity was observed to be 6.42 mg/g ascorbic acid dry weight. Total phenolic acid and total flavonoid content of the investigated Rheum turkestanicum were higher in comparison to other components.
Conclusion: This fact indicates that phenolic acids and flavonoids play a major role in the antioxidant and anti-diabetic properties of Rheum turkestanicum. The results also indicate that Rheum turkestanicum can be used as an important source of antioxidants in the food and pharmaceutical industries due to its high levels of secondary metabolites such as phenols and flavonoids.
Full-Text [PDF 270 kb]   (2228 Downloads)    
Type of Study: Research | Subject: General

References
1. Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim. Biophys. Acta, Gen. Subj. 2017. 1861.8: 1929-1942 [DOI:10.1016/j.bbagen.2017.05.013] [PMID]
2. Yazdi MET, Khara J, Husaindokht MR, Reza H, Sadeghnia SEB, Amiri MS, et al. Biocomponents and Antioxidant Activity of Ribes khorasanicum. International J Basic Sci Med. 2018. 3.3: 99-1032018. [DOI:10.15171/ijbsm.2018.18]
3. Dehghan P, Aliasgharzadeh A, Asghari Jafar-abadi M, Pourghassem Gargari B. Effect of inulin supplementation on total antioxidant capacity, glutathione peroxidase, superoxidase and catalase activities of type2 diabetes patients. Stud. Med. Sci. 2014;24(12):977-86. [Google Scholar]
4. Cadet J, Davies KJ. Oxidative DNA damage & repair: an introduction. Free Radicals Biol. Med. 2017.107: 2-12. [DOI:10.1016/j.freeradbiomed.2017.03.030] [PMID] [PMCID]
5. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J. Cell. Physiol. 2018;233(1):141-52. [DOI:10.1002/jcp.25756] [PMID]
6. Mazani M, Tutunchi S, Shahi D, Manafi H, Yazdi M, Khajoie Najad M, et al. Prevention effect of turmeric extract on methotrexate-induced intestinal toxicity by alleviating oxidative stress in rats. Stud. Med. Sci. 2014; 25(2):119-28. [Google Scholar]
7. Zarezade V, Moludi J, Mostafazadeh M, Mohammadi M, Veisi A. Antioxidant and hepatoprotective effects of Artemisia dracunculus against CCl4-induced hepatotoxicity in rats. Avicenna J. Phytomed. 2017;8(1):51-62. [PMID]
8. Modarres M, Bahabadi SE, Yazdi MET. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose. Cytotechnology. 2018:1-10. [DOI:10.1007/s10616-017-0178-0] [PMID] [PMCID]
9. Hakkim FL, Arivazhagan G, Boopathy R. Antioxidant property of selected Ocimum species and their secondary metabolite content. J. Med. Plants Res. 2013;2(9):250-7. [URL]
10. Hamidi A, Yazdi MET, Amiri MS, Hosseini HA, Darroudi M. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res. Chem. Intermed. 2019;45(5):2915-25. [DOI:10.1007/s11164-019-03770-y]
11. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 2006;97(6):1634-58. [DOI:10.1111/j.1471-4159.2006.03907.x] [PMID]
12. Ferguson LR. Chronic inflammation and mutagenesis. Mutat. Res., Fundam. Mol. Mech. Mutagen. 2010;690(1):3-11. [DOI:10.1016/j.mrfmmm.2010.03.007] [PMID]
13. Soleimani Z, Afshar AS, Nematpour FS. Responses of antioxidant gene and enzymes to salinity stress in the Cuminum cyminum L. Russ. J. Plant Physiol. 2017;64(3):361-7. [DOI:10.1134/S1021443717030177]
14. Gülçin I. Antioxidant activity of food constituents: an overview. Arch. Toxicol. 2012; 86(3):345-91. [DOI:10.1007/s00204-011-0774-2] [PMID]
15. Mohebali N, Shahzadeh Fazeli SA, Ghafoori H, Farahmand Z, MohammadKhani E, Vakhshiteh F, et al. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer's disease. Nutr. Neurosci. 2018;21(2):143-50. [DOI:10.1080/1028415X.2016.1238026] [PMID]
16. Yazdi MET, Modarres M, Amiri MS, Darroudi M. Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties. Res. Chem. Intermed. 2018:1-12. [URL]
17. Yazdi MET, Khara J, Housaindokht M, Sadeghnia HR, Bahabadi SE, Amiri MS, et al. Role of Ribes khorasanicum in the biosynthesis of silver nanoparticles and their antibacterial properties. IET Nanobiotech. 2018. [PMID] [PMCID]
18. Yazdi ME, Amiri MS, Darroudi M. Biopolymers in the Synthesis of Different Nanostructures. 2019. [DOI:10.1016/B978-0-12-803581-8.10560-0]
19. Yazdi MET, Hamidi A, Amiri MS, Kazemi Oskuee R, Hosseini HA, Hashemzadeh A, et al. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater Technol. 2019:1-8. [URL]
20. Yazdi MET, Amiri MS, Hosseini HA, Oskuee RK, Mosawee H, Pakravanan K, et al. Plant-based synthesis of silver nanoparticles in Handelia trichophylla and their biological activities. Bullet. Mater. Sci. 2019;42(4):155. [DOI:10.1007/s12034-019-1855-8]
21. Ghorbani A, Amiri MS, Hosseini A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon. 2019;5(6):e01986. [DOI:10.1016/j.heliyon.2019.e01986] [PMID] [PMCID]
22. Amiri MS, Joharchi MR, TaghavizadehYazdi ME. Ethno-medicinal plants used to cure jaundice by traditional healers of Mashhad, Iran. J. Pharm. Res. 2014;13(1):157. [] [PMID] [PMCID]
23. Yazdi MET, Khara J, Sadeghnia HR, Bahabadi SE, Darroudi M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res. Chem. Intermed.2018;44(2):1325-34. [DOI:10.1007/s11164-017-3169-z]
24. Dehghan H, Salehi P, Amiri MS. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod. 2018;117:303-9. [DOI:10.1016/j.indcrop.2018.02.086]
25. Shiezadeh F, Mousavi SH, Amiri MS, Iranshahi M, Tayarani-Najaran Z, Karimi G. Cytotoxic and apoptotic potential of Rheum turkestanicum Janisch root extract on human cancer and normal cells. Iran. J. Pharm. Res. 2013;12(4):811. [PMID] [PMCID]
26. Singleton V, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16(3):144-58.
27. Wagner GJ. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiol. 1979;64(1):88-93. [DOI:10.1104/pp.64.1.88] [PMID] [PMCID]
28. Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002;10(3). [DOI:10.38212/2224-6614.2748]
29. Craigie JS, Hellebust JA. Handbook of phycological methods: physiological and biochemical methods: Cambridge University Press; 1978. [URL]
30. Najafabad AM, Jamei R. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L.) in both fresh and dried samples. Avicenna J. Phytomed. 2014;4(5):343. [PMID]
31. Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect 2013;4(5):246-54. [DOI:10.1016/j.phrp.2013.09.003] [PMID] [PMCID]
32. Geetha S, Ram MS, Mongia S, Singh V, Ilavazhagan G, Sawhney R. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium (VI) induced oxidative stress in albino rats. J. Ethnopharmacol. 2003;87(2):247-51. [DOI:10.1016/S0378-8741(03)00154-5] [PMID]
33. Gupta A, Chaphalkar S. Anti-inflammatory and immunosuppressive activities of flavonoids from medicinal plants. J. HerbMed Pharmacol. 2016;5. [Google Scholar]
34. Hirabayashi J. On the origin of elementary hexoses. Q. Rev. Biol. 1996;71(3):365-80. [DOI:10.1086/419443] [PMID]
35. op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, et al. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell. 2003;15(10):2320-32. [DOI:10.1105/tpc.014662] [PMID] [PMCID]
36. Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science. 2004;306(5699):1183-5. [DOI:10.1126/science.1103178] [PMID]
37. Hosseini A, Rajabian A, Fanoudi S, Farzadnia M, Boroushaki MT. Protective effect of Rheum turkestanicum root against mercuric chloride-induced hepatorenal toxicity in rats. Avicenna J. Phytomed. 2018;8(6):488. [PMCID]
38. Hosseini A, Fanoudi S, Mollazadeh H, Aghaei A, Boroushaki MT. Protective effect of Rheum turkestanicum against cisplatin by reducing oxidative stress in kidney tissue. J. Pharm. BioAllied Sci. 2018;10(2):66. [DOI:10.4103/JPBS.JPBS_9_18] [PMID] [PMCID]
39. Harborne A. Phytochemical methods a guide to modern techniques of plant analysis: springer science & business media; 1998. [Google Scholar]
40. Horbowicz M, Kosson R, Grzesiuk A, Dębski H. Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition. Veg. Crops Res. Bull. 2008;68:5-22. [DOI:10.2478/v10032-008-0001-8]
41. Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology. 2000;148(2):119-23. [DOI:10.1016/S0300-483X(00)00202-X] [PMID]
42. Shukla S, Mehta A, Bajpai VK, Shukla S. In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem Toxicol. 2009; 47(9):2338-43. [DOI:10.1016/j.fct.2009.06.024] [PMID]
43. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews. 1998;56(11):317-33. [DOI:10.1111/j.1753-4887.1998.tb01670.x] [PMID]
44. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Science. 2012;196:67-76. [DOI:10.1016/j.plantsci.2012.07.014] [PMID]
45. Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2017;86:605-11. [DOI:10.1016/j.biopha.2016.12.059] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.