@ARTICLE{Khaleghian, author = {ghahremani, sahar and khaleghian, mehrnoosh and samadizadeh, Marjaneh and }, title = {THEORETICAL STUDIES OF CHANGES IN PROPERTIES OF 5-FLUORO-2-DEOXYURIDINE (FUDR) ANTICANCER DRUG BY ADSORPTION ON BORON NITRIDE NANOTUBE (5, 5-11)}, volume = {31}, number = {4}, abstract ={Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of drug and reduce its side effects. Materials & Methods: In this study, boron nitride nanotubes (n = 5, m = 5) with 11 angstroms length were used to compare effects of encapsulation anticancer drug 5-Fluoro-2-deoxyuridine(FUDR) with this nanotube. Using Density Functional Theory (DFT) and at theoretical level of M06-2X / 6-31G *, structure of drug, BNNT (5,5-11), and Nano - Drug System were optimized. Results: Using the structures optimized, spatial parameters, HOMO-LUMO orbitals, graphs of density of states (DOS), Natural Bond Orbital (NBO), electronic properties, parameters of atoms in molecules (AIM ), and Molecular Electrostatic Potential(MEP) were discussed and results were analyzed. Conclusion: The NBO and AIM results, absorption energy, and thermodynamic functions indicate that drug adsorption by nanotube process is desirable. Many drugs have low solubility in water and when placed in presence of a polarized substrate such as boron nitride nanotube, a high solubility drug complex is formed through hydrogen bonds with that substrate, which increases solubility of drug and reduces drug accumulation and toxicity in the body. }, URL = {http://umj.umsu.ac.ir/article-1-5006-en.html}, eprint = {http://umj.umsu.ac.ir/article-1-5006-en.pdf}, journal = {Studies in Medical Sciences}, doi = {}, year = {2020} }