Volume 32, Issue 11 (Februery 2022)                   Studies in Medical Sciences 2022, 32(11): 847-856 | Back to browse issues page

XML Persian Abstract Print

Assistant Professor, Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , Framezani82@gmail.com
Abstract:   (1268 Views)
Background & Aims: Owing to its anti-cancer and anti-oxidant properties, Kaempferol (KAE) has become an ideal candidate to be more welcome into clinical practice. However, Due to its low water solubility and bioavailability, we aimed to design and address a new liposomal formulation with KAE and evaluate its anti-cancer activity against MDA-MB 468 breast cancer cells.
Materials & Methods: To characterize the physicochemical features, pharmaceutical parameters such as nanoparticle size, morphology of particles under scanning electron microscopy (SEM), and zeta potential were measured. The optimum liposomal formulation along with paclitaxel was incubated to investigate their biological activity against breast cancer cells. Furthermore, molecular mechanisms related to program cell death (apoptosis) and their gene expression were measured by flowcytometric and real-time PCR, respectively.
 Results: SEM images showed narrow distributed and scattered particles with the size of 80.3 nm (KAE) formulated in liposomes. IC50 values for KAE and paclitaxel were determined to be as 44 ± 0.52 μM and 1.75 ± 0.36 nM, respectively. Cell proliferation averaged from 44 ± 3.9% to 56 ± 26.8% (p <0.05) after treatment with KAE-loaded liposomes. Co-administration of nanoparticles containing KAE and paclitaxel in cancer cells significantly increased the percentage of apoptosis (P <0.05).
Conclusion: Taking our data into consideration, we suggest that insertion of KAE into liposomal carriers not only improved the bioavailability of this flavonoid but also surged the anti-cancer efficacy of paclitaxel.
Full-Text [PDF 835 kb]   (496 Downloads)    
Type of Study: Research | Subject: Oncology

1. Hosseini K, Razi Soofiyani S, Eghdam Zamiri R, Farjami A, Dilmaghani A, Mahdavi M, et al. Layered double hydroxide nanostructures as drug-carriers in treatment of breast cancer. Nanomedicine J 2022;9(2):95-106. [Google Scholar]
2. Kikuchi H, Yuan B, Hu X, Okazaki M. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res 2019;9(8):1517. [PMID] [PMCID]
3. Bisol Â, de Campos PS, Lamers ML. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother Res 2020;34(3):568-82. [DOI:10.1002/ptr.6551] [PMID]
4. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020;12(2):457. [DOI:10.3390/nu12020457] [PMID] [PMCID]
5. Sabzichi M, Ramezani M, Mohammadian J, Ghorbani M, Mardomi A, Najafipour F, et al. The synergistic impact of quinacrine on cell cycle and anti-invasiveness behaviors of doxorubicin in MDA-MB-231 breast cancer cells. Process Biochem 2019;81:175-81. [DOI:10.1016/j.procbio.2019.03.007]
6. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019;24(12):2277. [DOI:10.3390/molecules24122277] [PMID] [PMCID]
7. Lokhande KB, Ballav S, Thosar N, Swamy KV, Basu S. Exploring conformational changes of PPAR-Ɣ complexed with novel kaempferol, quercetin, and resveratrol derivatives to understand binding mode assessment: a small-molecule checkmate to cancer therapy. J Mol Model 2020;26(9):1-12. [DOI:10.1007/s00894-020-04488-0] [PMID]
8. Pang X, Zhang X, Jiang Y, Su Q, Li Q, Li Z. Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. Biomolecules 2021;11(2):135. [DOI:10.3390/biom11020135] [PMID] [PMCID]
9. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65(1):36-48. [DOI:10.1016/j.addr.2012.09.037] [PMID]
10. Yadav D, Sandeep K, Pandey D, Dutta RK. Liposomes for drug delivery. J Biotechnol Biomater 2017;7(4):276. [DOI:10.4172/2155-952X.1000276]
11. Rapalli VK, Kaul V, Waghule T, Gorantla S, Sharma S, Roy A, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharma Sci 2020;152:105438. [DOI:10.1016/j.ejps.2020.105438] [PMID]
12. Landh E, Moir LM, Dos Reis LG, Traini D, Young PM, Ong HX. Inhaled rapamycin solid lipid nano particles for the treatment of Lymphangioleiomyomatosis. Eur J Pharma Sci 2020;142:105098. [DOI:10.1016/j.ejps.2019.105098] [PMID]
13. Armat M, Ramezani F, Molavi O, Sabzichi M, Samadi N. Six family of homeobox genes and related mechanisms in tumorigenesis protocols. Tumori J 2016;102(3):236-43. [DOI:10.5301/tj.5000495] [PMID]
14. Shi L-L, Xie H, Lu J, Cao Y, Liu J-Y, Zhang X-X, et al. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharma 2016;13(8):2667-76. [DOI:10.1021/acs.molpharmaceut.6b00226] [PMID]
15. Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci 2016;17(9):1440. [DOI:10.3390/ijms17091440] [PMID] [PMCID]
16. Zhang Y, Yang W-X. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels. Beilstein J Nanotechnol 2016;7(1):675-84. [DOI:10.3762/bjnano.7.60] [PMID] [PMCID]
17. Hu K, Cao S, Hu F, Feng J. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: preparation, in vitro, and in vivo evaluation. Int J Nanomedicine2012;7:3537. [DOI:10.2147/IJN.S32880] [PMID] [PMCID]
18. Mohammadian J, Mahmoudi S, Pourmohammad P, Pirouzpanah M, Salehnia F, Maroufi NF, et al. Formulation of Stattic as STAT3 inhibitor in nanostructured lipid carriers (NLCs) enhances efficacy of doxorubicin in melanoma cancer cells. Naunyn-Schmiedeb Arch Pharmacol 2020;393(12):2315-23. [DOI:10.1007/s00210-020-01942-x] [PMID]
19. Lakshmi BA, Reddy AS, Sangubotla R, Hong JW, Kim S. Ruthenium (II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids and Surfaces B: Biointerfaces 2021;204:111773. [DOI:10.1016/j.colsurfb.2021.111773] [PMID]
20. Lombardo D, Kiselev MA. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutic. 2022;14(3):543. [DOI:10.3390/pharmaceutics14030543] [PMID] [PMCID]
21. Sabzichi M, Oladpour O, Mohammadian J, Rashidi M, Hosseinzadeh M, Mardomi A, et al. Zoledronic acid-loaded lipidic nanoparticles enhance apoptosis and attenuate invasiveness by inhibiting epithelial to mesenchymal transition (EMT) in HepG2 cancer cells. Naunyn-Schmiedeb Arch Pharmacol 2021;394(12):2429-39. [DOI:10.1007/s00210-021-02164-5] [PMID]
22. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013;138(4):2099-107. [DOI:10.1016/j.foodchem.2012.11.139] [PMID] [PMCID]
23. Onzi G, Guterres SS, Pohlmann AR, Frank LA. Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect. The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics. 2021:1-13. [DOI:10.1007/978-3-030-51519-5_108-1]
24. Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 2020;241:116363. [DOI:10.1016/j.carbpol.2020.116363] [PMID]
25. Barbieri S, Sonvico F, Como C, Colombo G, Zani F, Buttini F, et al. Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake. J Control Release 2013;167(3):276-83. [DOI:10.1016/j.jconrel.2013.02.009] [PMID]
26. Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioproc Tech 2014;7(4):1149-59. [DOI:10.1007/s11947-013-1160-2]
27. Tu LY, Bai HH, Cai JY, Deng SP. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Scanning 2016;38(6):644-53. [DOI:10.1002/sca.21312] [PMID]
28. Alonso-Castro AJ, Ortiz-Sánchez E, García-Regalado A, Ruiz G, Núñez-Martínez JM, González-Sánchez I, et al. Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects. J Ethnopharmacol 2013;145(2):476-89. [DOI:10.1016/j.jep.2012.11.016] [PMID]
29. Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020;255:117481. [DOI:10.1016/j.lfs.2020.117481] [PMID]
30. Kumar A, Bevara GB, Kaja LK, Badana AK, Malla RR. Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells. BMC Complement Altern Med 2016;16(1):1-13. [DOI:10.1186/s12906-016-1354-z] [PMID] [PMCID]
31. Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020;881:173226. [DOI:10.1016/j.ejphar.2020.173226] [PMID]
32. Afrin S, Giampieri F, Cianciosi D, Pistollato F, Ansary J, Pacetti M, et al. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J Funct Foods 2019;57:439-52. [DOI:10.1016/j.jff.2019.04.035]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.