Volume 32, Issue 10 (January 2022)                   Studies in Medical Sciences 2022, 32(10): 773-781 | Back to browse issues page

Research code: 62233
Ethics code: IR.TBZMED.VCR.REC.1397.485


XML Persian Abstract Print


Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , rezarahbardvm@gmail.com
Abstract:   (447 Views)
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion and to maintain the integrity of the myocardial tissue after infarction. Today, the transplantation of stem cells to restore structure and maintain heart function has opened new hopes for clinicians in human medicine. These cells accelerate the healing process by secreting a variety of factors and differentiation into varient cell lines, including vascular cells. Here, we investigated the inhibitory role of Wnt3a factor on the process of differentiation of rat cardiomyoblast (H9C2) to endothelial cells.  
Materials & Methods: In this experimental study, rat cardiomyoblast (H9C2) were expanded in DMEM/HG and exposed to 10 µM LGK-974 (a Wnt3a inhibitor) for 48 hours. The viability of cells was determined using MTT method. The ability to differentiation into endothelial cells was assessed by measuring expression and protein levels of VE-Cadherin and vWF using real-time PCR and western blotting. 
Results: The inhibition of Wnt3a in H9C2 cells could significantly reduce cell survival rate after 48 hours compared to the control cells (p<0.05). Based on data, expression and protein levels of VE-Cadherin and vWF were significantly diminished in group incubated with LGK-974
Conclusion: The inhibition of Wnt3a can suppress the angiogenic potential of rat cardio myoblasts
 
Full-Text [PDF 1006 kb]   (108 Downloads)    
Type of Study: Research | Subject: قلب و عروق

References
1. Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 2015;6(1):26. [DOI:10.1186/s13287-015-0010-8] [PMID] [PMCID]
2. Kumar D, Kamp TJ, LeWinter MM. Embryonic stem cells: differentiation into cardiomyocytes and potential for heart repair and regeneration. Coron Artery Dis 2005;16(2):111-6. https://doi.org/10.1097/00019501-200503000-00006 [DOI:10.1097/00019501-200503000-00001] [PMID]
3. Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A, et al. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Intl J Cardiol 2014;173(3):453-66. [DOI:10.1016/j.ijcard.2014.03.008] [PMID]
4. Lee J-H, Parthiban P, Jin G-Z, Knowles JC, Kim H-W. Materials roles for promoting angiogenesis in tissue regeneration. Prog Mater Sci 2021;117:100732. [DOI:10.1016/j.pmatsci.2020.100732]
5. Guo Y, Guo Y, Chen C, Fan D, Wu X, Zhao L, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: Involvement of miR-30c-5p/TCF7 axis. Mol Cancer 2021;20(1):1-21. [DOI:10.1186/s12943-021-01372-0] [PMID] [PMCID]
6. Zhou W, Yang L, Nie L, Lin H. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis. Am J Cancer Res 2021;11(2):301-17. [PMID] [PMCID]
7. Brunt KR, Zhang Y, Mihic A, Li M, Li S-H, Xue P, et al. Role of WNT/β-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. Am J Clin Pathol 2012;181(6):2067-78. [DOI:10.1016/j.ajpath.2012.08.021] [PMID]
8. Tanaka T, Obana M, Mohri T, Ebara M, Otani Y, Maeda M, et al. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells. Cytokine 2015;75(2):365-72. [DOI:10.1016/j.cyto.2015.06.009] [PMID]
9. Du Y, Zhang S, Yu T, Du G, Zhang H, Yin Z. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation. Mol Med Rep 2016;14(3):2473-82. Epub 2016/08/01. [DOI:10.3892/mmr.2016.5582] [PMID] [PMCID]
10. Sheshpari S, Shahnazi M, Ahmadian S, Nouri M, Abbasi MM, Beheshti R, et al. Intra-ovarian injection of bone marrow-derived c-Kit+ cells for ovarian rejuvenation in menopausal rats. BioImpacts 2021. [DOI:10.34172/bi.2021.23499] [PMID] [PMCID]
11. Sidik N, Morrow A, Berry C. Human Microcirculation in Ischemic Heart Disease. Arterioscler Thromb Vasc Biol 2020;40(1):11-3. [DOI:10.1161/ATVBAHA.119.313579] [PMID]
12. Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol 2021;(9):940. [DOI:10.3389/fcell.2021.636136] [PMID] [PMCID]
13. Sebastião MJ, Serra M, Pereira R, Palacios I, Gomes-Alves P, Alves PM. Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Res Ther 2019;10(1):77. [DOI:10.1186/s13287-019-1174-4] [PMID] [PMCID]
14. Khaksar M, Sayyari M, Rezaie J, Pouyafar A, Montazersaheb S, Rahbarghazi R. High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu. Cell Biochem Funct 2018;36(7):346-56. [DOI:10.1002/cbf.3354] [PMID]
15. Mauretti A, Spaans S, Bax NAM, Sahlgren C, Bouten CVC. Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells Int 2017;2017:7471582-. Epub 2017/09/17. [DOI:10.1155/2017/7471582] [PMID] [PMCID]
16. Tian D, Shi Y, Chen D, Liu Q, Fan F. The Wnt inhibitor LGK-974 enhances radiosensitivity of HepG2 cells by modulating Nrf2 signaling. Int J Oncol 2017;51(2):545-54. [DOI:10.3892/ijo.2017.4042] [PMID]
17. Zhao M, Tang Y, Zhou Y, Zhang J. Deciphering role of Wnt signalling in cardiac mesoderm and cardiomyocyte differentiation from human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Sci Rep 2019;9(1):1-15. [DOI:10.1038/s41598-019-55620-x] [PMID] [PMCID]
18. Münsterberg A, Hoppler S. WNT and BMP regulate roadblocks toward cardiomyocyte differentiation: lessons learned from embryos inform human stem cell differentiation. Stem Cell Investig 2016;3:33. [DOI:10.21037/sci.2016.07.03] [PMID] [PMCID]
19. Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Rell Rep 2016;7(4):764-76. [DOI:10.1016/j.stemcr.2016.08.008] [PMID] [PMCID]
20. Cho J, Rameshwar P, Sadoshima J. Distinct Roles of Glycogen Synthase Kinase (GSK)-3α and GSK-3β in Mediating Cardiomyocyte Differentiation in Murine Bone Marrow-derived Mesenchymal Stem Cells. J Biol Chem 2009;284(52):36647-58. [DOI:10.1074/jbc.M109.019109] [PMID] [PMCID]
21. Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 2008;135 (5): 789-798.. [DOI:10.1242/dev.016865] [PMID]
22. Saraswati S, Deskins DL, Holt GE, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, increases engraftment and inhibits lineage commitment of mesenchymal stem cells (MSCs). Wound Repair Regen 2012;20(2):185-93. Epub 2012/02/14. [DOI:10.1111/j.1524-475X.2012.00767.x] [PMID] [PMCID]
23. Olsen JJ, Pohl SÖ-G, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, et al. The Role of Wnt Signalling in Angiogenesis. Clin Biochem Rev 2017;38(3):131-42. [PMID] [PMCID]
24. Hawkins AG, Pedersen EA, Treichel S, Temprine K, Sperring C, Read JA, et al. Wnt/β-catenin-activated Ewing sarcoma cells promote the angiogenic switch. JCI Insight. 2020;(5):13. [DOI:10.1172/jci.insight.135188] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.