Volume 32, Issue 12 (March 2022)                   Studies in Medical Sciences 2022, 32(12): 895-907 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi Gardeshi T, Norbakhsh R, Dalvand S, Boroughani Z. Secondary Metabolites of Soil Actinomycetes, UTMC 676 and UTMC 919, Induces Apoptosis in Human Non‑Small-Cell Lung Cancer Cell Line. Studies in Medical Sciences 2022; 32 (12) :895-907
URL: http://umj.umsu.ac.ir/article-1-5520-en.html
Department of Microbial Biotechnology, University of Tehran, Tehran, Iran (Corresponding Author) , zahra.boroughani@yahoo.com
Abstract:   (1584 Views)
Background & Aims: Bacterial metabolites are extremely rich resources for discovering new compounds with different biological activities. Metabolites of actinomycetes have significant potential for the production of anticancer compounds. The purpose of this research is to investigate the effects of two secondary metabolites of soil actinomycetes, UTMC 676 and UTMC 919, on apoptosis induction and their related genes in the human non-small cell lung carcinoma cell line, A549.
Materials & Methods: The crude extracts of UTMC 676 and UTMC 919 were prepared from the collection of biological compounds of Tehran University. After cell treatment with UTMC 676 and UTMC 919, cell cytotoxicity, apoptosis, and mRNA expression were measured using MTT, flow cytometry, and q-RT-PCR methods. Doxorubicin was utilized as a positive control.
Results: The MTT results showed induction of cytotoxicity by UTMC 676, UTMC 919, and doxorubicin in A549 cells in a concentration-dependent manner. After 48 hours of treatment, both UTMC 676 and UTMC 919 induced apoptosis in the A549 cell line. However, the apoptotic effect of UTMC 676 was more than doxorubicin. The q-RT-PCR data exhibited that the expression of apoptosis-related genes was enhanced in the treated group compared to the untreated group.
Conclusion: These results suggest that the crude extract of UTMC 676 was able to induce apoptosis in A549 cells and could be a very promising source having therapeutic potential against lung cancer cell lines.
Full-Text [PDF 947 kb]   (497 Downloads)    
Type of Study: Research | Subject: General

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. [DOI:10.3322/caac.21492] [PMID]
2. Khazaei S, Mansori K, Soheylizad M, Gholamaliee B, Khosravi Shadmani F, Khazaei Z, et al. Epidemiology of lung cancer in Iran: sex difference and geographical distribution. Middle East J Cancer 2017;8(4):223-8. [Google Scholar]
3. Duma N, Santana-Davila R, Molina JR, editors. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc; 2019: Elsevier. [DOI:10.1016/j.mayocp.2019.01.013] [PMID]
4. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 2016;5(3):288. [DOI:10.21037/tlcr.2016.06.07] [PMID] [PMCID]
5. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med 2018;379(23):2220-9. [DOI:10.1056/NEJMoa1809064] [PMID]
6. Rosell R, Karachaliou N. Optimizing lung cancer treatment approaches. Nat Rev Clin Oncol 2015;12(2):75-6. [DOI:10.1038/nrclinonc.2014.225] [PMID]
7. Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, et al. Suppressing effects of green tea extract and Epigallocatechin-3-gallate (EGCG) on TGF-β-induced Epithelial-to-mesenchymal transition via ROS/Smad signaling in human cervical cancer cells. Gene 2021;794:145774. [DOI:10.1016/j.gene.2021.145774] [PMID]
8. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med 2017;377(9):849-61. [DOI:10.1056/NEJMra1703413] [PMID]
9. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, et al. Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 2017;18(2):367. [DOI:10.3390/ijms18020367] [PMID] [PMCID]
10. Abazari O, Divsalar A, Ghobadi R. Inhibitory effects of oxali-Platin as a chemotherapeutic drug on the function and structure of bovine liver catalase. J Biomol Struct Dyn 2020;38(2):609-15. [DOI:10.1080/07391102.2019.1581088] [PMID]
11. Liu L, Fan J, Ai G, Liu J, Luo N, Li C, et al. Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol Res 2019;52(1):1-14. [DOI:10.1186/s40659-019-0243-6] [PMID] [PMCID]
12. Croce CM, Reed JC. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res 2016;76(20):5914-20. [DOI:10.1158/0008-5472.CAN-16-1248] [PMID] [PMCID]
13. Fattah A, Morovati A, Niknam Z, Mashouri L, Asadi A, Rizi ST, et al. The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line. Iran J Public Health 2021;50(5):1037. [DOI:10.18502/ijph.v50i5.6121] [PMID] [PMCID]
14. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020;17(7):395-417. [DOI:10.1038/s41571-020-0341-y] [PMID] [PMCID]
15. Li W, Shi Y, Wang R, Pan L, Ma L, Jin F. Resveratrol promotes the sensitivity of small-cell lung cancer H446 cells to cisplatin by regulating intrinsic apoptosis. Int J Oncol 2018;53(5):2123-30. [DOI:10.3892/ijo.2018.4533] [PMID]
16. Handali S, Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, et al. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed Pharmacother 2018;108:1259-73. [DOI:10.1016/j.biopha.2018.09.128] [PMID]
17. Dai XY, Zhou BF, Xie YY, Lou J, Li KQ. Bufalin and 5‑fluorouracil synergistically induce apoptosis in colorectal cancer cells. Oncol Lett 2018;15(5):8019-26. [DOI:10.3892/ol.2018.8332] [PMID] [PMCID]
18. Paul I, Jones JM. Apoptosis block as a barrier to effective therapy in non small cell lung cancer. World J Clin Oncol 2014;5(4):588. [DOI:10.5306/wjco.v5.i4.588] [PMID] [PMCID]
19. Maleki N, Yavari N, Ebrahimi M, Faiz AF, Ravesh RK, Sharbati A, et al. Silibinin exerts anti-cancer activity on human ovarian cancer cells by increasing apoptosis and inhibiting epithelial-mesenchymal transition (EMT). Gene 2022;823:146275. [DOI:10.1016/j.gene.2022.146275] [PMID]
20. Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019;12(1):1-18. [DOI:10.1186/s13045-019-0818-2] [PMID] [PMCID]
21. Asadi A, Nezhad DY, Javazm AR, Khanicheragh P, Mashouri L, Shakeri F, et al. In Vitro Effects of Curcumin on Transforming Growth Factor-β-mediated Non-Smad Signaling Pathway, Oxidative Stress, and Pro‐inflammatory Cytokines Production with Human Vascular Smooth Muscle Cells. Iran J Allergy Asthma Immunol 2020:84-93. [DOI:10.18502/ijaai.v19i1.2421]
22. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 2016;25(Suppl. 2):41-59. [DOI:10.1159/000443404] [PMID] [PMCID]
23. Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, et al. Synergistic effects of green tea extract and paclitaxel in the induction of mitochondrial apoptosis in ovarian cancer cell lines. Gene 2021;787:145638. [DOI:10.1016/j.gene.2021.145638] [PMID]
24. Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, et al. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front Pharmacol 2019;9:1534. [DOI:10.3389/fphar.2018.01534] [PMID] [PMCID]
25. Roy A, Jauhari N, Bharadvaja N. Medicinal plants as a potential source of chemopreventive agents. anticancer plants: Natural products and biotechnological implements: Springer; 2018. p. 109-39. [DOI:10.1007/978-981-10-8064-7_6]
26. Bernardi DI, das Chagas FO, Monteiro AF, Dos Santos GF, de Souza Berlinck RG. Secondary metabolites of endophytic Actinomycetes: isolation, synthesis, biosynthesis, and biological activities. Prog Chem Org Nat Prod 2019;108:207-96. [DOI:10.1007/978-3-030-01099-7_3] [PMID]
27. Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2019;234(7):10018-31. [DOI:10.1002/jcp.27860] [PMID]
28. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 2018;67(3):259. [DOI:10.21307/pjm-2018-048] [PMID] [PMCID]
29. Hozzein WN, Mohany M, Alhawsawi SM, Zaky MY, Al-Rejaie SS, Alkhalifah DHM. Flavonoids from Marine-Derived Actinobacteria as Anticancer Drugs. Curr Pharm Des 2020. [DOI:10.2174/1381612826666201216160154] [PMID]
30. Musavi H, Abazari O, Barartabar Z, Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P, et al. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch Physiol Biochem 2020:1-9. [DOI:10.1080/13813455.2020.1826530] [PMID]
31. Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA, et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1, 10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. J Iran Chem Soc 2020;17(7):1601-14. [DOI:10.1007/s13738-020-01879-1]
32. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019;85(1). [DOI:10.5334/aogh.2419] [PMID] [PMCID]
33. Musavi H, Abazari O, Safaee MS, Variji A, Koohshekan B, Kalaki-Jouybari F, et al. Mechanisms of COVID-19 Entry into the Cell: Potential Therapeutic Approaches Based on Virus Entry Inhibition in COVID-19 Patients with Underlying Diseases. Iran J Allergy Asthma Immunol 2021;20(1):11-23. [DOI:10.18502/ijaai.v20i1.5409] [PMID]
34. Terlizzi M, Colarusso C, Pinto A, Sorrentino R. Drug resistance in non-small cell lung Cancer (NSCLC): Impact of genetic and non-genetic alterations on therapeutic regimen and responsiveness. Pharmacol Ther 2019;202:140-8. [DOI:10.1016/j.pharmthera.2019.06.005] [PMID]
35. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016;43(2-3):155-76. [DOI:10.1007/s10295-015-1723-5] [PMID]
36. Maleki N, Ravesh RK, Salehiyeh S, Faiz AF, Ebrahimi M, Sharbati A, et al. Comparative effects of estrogen and silibinin on cardiovascular risk biomarkers in ovariectomized rats. Gene 2022;823:146365. [DOI:10.1016/j.gene.2022.146365] [PMID]
37. Davies-Bolorunduro OF, Adeleye IA, Akinleye MO, Wang PG. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J Pharm Anal 2019;9(3):201-8. [DOI:10.1016/j.jpha.2019.03.004] [PMID] [PMCID]
38. Fattah A, Asadi A, Shayesteh MRH, Hesari FH, Jamalzehi S, Abbasi M, et al. Fertility and infertility implications in rheumatoid arthritis; state of the art. Inflamm Res 2020;69:721-9. [DOI:10.1007/s00011-020-01362-w] [PMID]
39. Wang C, Lu Y, Cao S. Antimicrobial compounds from marine actinomycetes. Arch Pharm Res 2020:1-28. [PMID] [PMCID]
40. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83(3):770-803. [DOI:10.1021/acs.jnatprod.9b01285] [PMID]
41. Barmaki H, Morovati A, Eydivandi Z, Naleshkenani FJ, Saedi S, Musavi H, et al. The Association between Serum Oxidative Stress Indexes and Pathogenesis of Parkinson's Disease in the Northwest of Iran. Iran J Public Health 2021;50(3):606-15. [DOI:10.18502/ijph.v50i3.5621] [PMID] [PMCID]
42. Pinato DJ, Gramenitskaya D, Altmann DM, Boyton RJ, Mullish BH, Marchesi JR, et al. Antibiotic therapy and outcome from immune-checkpoint inhibitors. J Immunother Cancer 2019;7(1):1-8. [DOI:10.1186/s40425-019-0775-x] [PMID] [PMCID]
43. Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2017;8(28):46635. [DOI:10.18632/oncotarget.16743] [PMID] [PMCID]
44. Musavi H, Tabnak M, Sheini FA, Bezvan MH, Amidi F, Abbasi M. Effect of garlic (Allium sativum) on male fertility: a systematic review. J Herb Med Pharmacol 2018;7(4):306-12. [DOI:10.15171/jhp.2018.46]
45. Pourgholi M, Abazari O, Pourgholi L, Ghasemi-Kasman M, Boroumand M. Association between rs3088440 (G> A) polymorphism at 9p21. 3 locus with the occurrence and severity of coronary artery disease in an Iranian population. Mol Biol Rep 2021;48(8):5905-12. [DOI:10.1007/s11033-021-06587-4] [PMID]
46. Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, et al. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 2012;167(10):616-22. [DOI:10.1016/j.micres.2012.02.008] [PMID]
47. Ravikumar S, Fredimoses M, Gnanadesigan M. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines. Asian Pac J Trop Biomed 2012;2(2):92-6. [DOI:10.1016/S2221-1691(11)60199-8]
48. Rambabu V, Suba S, Vijayakumar S. Antimicrobial and antiproliferative prospective of kosinostatin-a secondary metabolite isolated from Streptomyces sp. J Pharm Anal 2015;5(6):378-82. [DOI:10.1016/j.jpha.2014.11.002] [PMID] [PMCID]
49. Huang H, Lan X, Wang Y, Tian L, Fang Y, Zhang L, et al. New bioactive derivatives of nonactic acid from the marine Streptomyces griseus derived from the plant Salicornia sp. Phytochem Lett 2015;12:190-5. [DOI:10.1016/j.phytol.2015.04.001]
50. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018;25(1):104-13. [DOI:10.1038/cdd.2017.169] [PMID] [PMCID]
51. Dayati P, Rezaei HB, Sharifat N, Kamato D, Little PJ. G protein coupled receptors can transduce signals through carboxy terminal and linker region phosphorylation of Smad transcription factors. Life Sci 2018;199:10-5. [DOI:10.1016/j.lfs.2018.03.004] [PMID]
52. Balachandran C, Sangeetha B, Duraipandiyan V, Raj MK, Ignacimuthu S, Al-Dhabi N, et al. A flavonoid isolated from Streptomyces sp.(ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chem Biol Interact 2014;224:24-35. [DOI:10.1016/j.cbi.2014.09.019] [PMID]
53. Mohamed R, Dayati P, Mehr RN, Kamato D, Seif F, Babaahmadi-Rezaei H, et al. Transforming growth factor-β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J Cell Commun Signal 2019;13(2):225-33. [DOI:10.1007/s12079-018-0495-x] [PMID] [PMCID]
54. Pfeffer CM, Singh AT. Apoptosis: a target for anticancer therapy. Int J Mol Sci 2018;19(2):448. [DOI:10.3390/ijms19020448] [PMID] [PMCID]
55. Babaahmadi-Rezaei H, Little PJ, Mohamed R, Zadeh GM, Kheirollah A, Mehr RN, et al. Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Mol Cell Biochem 2022:1-8. [DOI:10.1007/s11010-021-04342-8] [PMID]
56. Moser J, Miller I, Carter D, Spencer SL. Control of the Restriction Point by Rb and p21. Proc Natl Acad Sci 2018;115(35):E8219-E27. [DOI:10.1073/pnas.1722446115] [PMID] [PMCID]
57. Shahidi M, Moradi A, Dayati P. Zingerone attenuates zearalenone-induced steroidogenesis impairment and apoptosis in TM3 Leydig cell line. Toxicon 2022. [DOI:10.1016/j.toxicon.2022.03.011] [PMID]
58. Zhang W, Che Q, Tan H, Qi X, Li J, Li D, et al. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin-proteasome system. Sci Rep 2017;7(1):1-14. [DOI:10.1038/srep42180] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb