Volume 31, Issue 7 (October 2020)                   Studies in Medical Sciences 2020, 31(7): 549-558 | Back to browse issues page

XML Persian Abstract Print

Cellular and molecular research center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran. (Corresponding Author , ya.sharifi@gmail.com
Abstract:   (2502 Views)
Background & Aims: Considering the importance of drug resistance among pathogenic bacteria and their treatment problems, this study aimed to determine the prevalence of extended-spectrum beta-lactamases (ESBLs), including TEM, SHV, and OXA genes among the isolated Escherichia coli and Klebsiella pneumoniae obtained from urine specimens of kidney transplant patients.
Materials & Methods: The bacterial isolates were collected and identified from urine specimens of kidney transplant patients at Imam Khomeini hospital of Urmia, Iran. All isolates were screened for ESBLs using both cefotaxime and ceftazidime, alone and in combination with clavulanate (Double Disc Diffusion Test; DDDT). The presence of TEM, SHV, OXA-10, and OXA-2 beta-lactamase genes were then investigated using PCR.
Results: A total of 96 isolates, including 39 (40.6%) K. pneumoniae and 57 (59.4%) E.coli were included in this study. Of these, 56 (58.3%) isolates were screened as ESBLs, including 17 K. pneumoniae and 39 E.coli using DDDT. The TEM (78.6%) and OXA-2 (7.1%) genes had the highest and lowest frequency among the isolates, respectively.
Conclusion: The study showed a relatively high frequency of ESBLs producing genes among E.coli and K. pneumoniae isolated from kidney transplant patients, indicating the necessity for early detection of these resistant infectious agents. It is also important to control the conditions in which these types of resistances are developed, especially the need for careful antibiotic administration.
Full-Text [PDF 2200 kb]   (1041 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

1. Kumamoto Y, Tsukamoto T, Matsukawa M, Kunishima Y, Yamaguti O, Ishibashi K, et al. Comparative studies on activities of antimicrobial agents against causative organisms isolated from patients with urinary tract infections (2003). II. Background of patients. Jpn J Antibiot 2005; 58(6):544-56. [URL]
2. Lukac PJ, Bonomo RA, Logan LK. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 2015; 60(9):1389-97. [DOI:10.1093/cid/civ020] [PMID] [PMCID]
3. Tumbarello M, Spanu T, Di Bidino R, Marchetti M, Ruggeri M, Trecarichi EM, et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010; 4(10):4085-91. [DOI:10.1128/AAC.00143-10] [PMID] [PMCID]
4. Knudsen JD, Andersen SE. A multidisciplinary intervention to reduce infections of ESBL- and AmpC-producing, gram-negative bacteria at a University Hospital. PLoS One 2014; 9(1):e86457. [DOI:10.1371/journal.pone.0086457] [PMID] [PMCID]
5. Kashef Nejad M, Jazani NH, Sharifi Y. Urinary tract infections among kidney transplant patients due to extended-spectrum beta-lactamase-producing bacteria. Microb Pathog 2017; 107:276-9. [DOI:10.1016/j.micpath.2017.03.046] [PMID]
6. Purnell TS, Auguste P, Crews DC, Lamprea-Montealegre J, Olufade T, Greer R, et al. Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis,and kidney transplantation: a systematic review. Am J Kidney Dis 2013; 62(5):953-73. [DOI:10.1053/j.ajkd.2013.03.022] [PMID] [PMCID]
7. Wayne A. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document. 2014;34(1). [URL]
8. Sturenburg E, Kuhn A, Mack D, Laufs R. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J Antimicrob Chemother 2004; 54(2):406-9. [DOI:10.1093/jac/dkh334] [PMID]
9. Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, et al. Survey of extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol. 1999;37(6):1758-63. [DOI:10.1128/JCM.37.6.1758-1763.1999] [PMID] [PMCID]
10. Yan JJ, Tsai SH, Chuang CL, Wu JJ. OXA-type beta-lactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan. J Microbiol Immunol Infect 2006; 39(2):130-4. [Google Scholar]
11. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 2002; 50(1):11-8. [DOI:10.1093/jac/dkf069] [PMID]
12. de Souza RM, Olsburgh J. Urinary tract infection in the renal transplant patient. Nat Clin Pract Nephrol 2008; 4(5):252-64. [DOI:10.1038/ncpneph0781] [PMID]
13. Kawecki D, Kwiatkowski A, Sawicka-Grzelak A, Durlik M, Paczek L, Chmura A, et al. Urinary tract infections in the early posttransplant period after kidney transplantation: etiologic agents and their susceptibility. Transplant Proc 2011; 43(8):2991-3. https://doi.org/10.1016/j.transproceed.2011.09.002 [DOI:10.1016/j.transproceed.2011.09.003] [PMID]
14. Mojtahedzadeh M, Panahi Y, Fazeli MR, Najafi A, Pazouki M, Navehsi BM, et al. Intensive care unit-acquired urinary tract infections in patients admitted with sepsis: etiology, risk factors, and patterns of antimicrobial resistance. Int J Infect Dis 2008; 12(3):312-8. [DOI:10.1016/j.ijid.2007.09.005] [PMID]
15. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13(5):269-84. [DOI:10.1038/nrmicro3432] [PMID] [PMCID]
16. Yacoub R, Akl NK. Urinary tract infections and asymptomatic bacteriuria in renal transplant recipients. J Glob Infect Dis 2011; 3(4):383-9. [DOI:10.4103/0974-777X.91064] [PMID] [PMCID]
17. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8(3):159-66. [DOI:10.1016/S1473-3099(08)70041-0]
18. Chander A, Shrestha CD. Prevalence of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res Notes 2013; 6:487. DOI: 10.1186/1756-0500-6-487 [DOI:10.1186/1756-0500-6-487] [PMID] [PMCID]
19. Guzman-Blanco M, Labarca JA, Villegas MV, Gotuzzo E. Extended spectrum beta-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 2014; 18(4):421-33. [DOI:10.1016/j.bjid.2013.10.005] [PMID] [PMCID]
20. Mehrgan H, Rahbar M, Arab-Halvaii Z. High prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a tertiary care hospital in Tehran, Iran. J Infect Dev Ctries 2010; 4(03):132-8. [DOI:10.3855/jidc.488] [PMID]
21. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013; 303(6-7):298-304. [DOI:10.1016/j.ijmm.2013.02.001] [PMID]
22. Jena J, Sahoo RK, Debata NK, Subudhi E. Prevalence of TEM, SHV, and CTX-M genes of extended-spectrum β-lactamase-producing Escherichia coli strains isolated from urinary tract infections in adults. 3 Biotech 2017; 7(4):244. DOI: 10.1007/s13205-017-0879-2 [DOI:10.1007/s13205-017-0879-2] [PMID] [PMCID]
23. Bajpai T, Pandey M, Varma M, Bhatambare GS. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med 2017; 7(1):12-6. [DOI:10.4103/2231-0770.197508] [PMID] [PMCID]
24. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist 2010; 16(1):49-53. [DOI:10.1089/mdr.2009.0096] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.