Volume 31, Issue 4 (July 2020)                   Studies in Medical Sciences 2020, 31(4): 305-315 | Back to browse issues page

XML Persian Abstract Print


Associated Professor of Sport Physiology, Department of Physical Education and Sport Sciences, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran. (Corresponding Author) , l_bolboli@uma.ac.ir
Abstract:   (2273 Views)
Background & Aims: The structural and functional adaptations of the heart muscle to various stresses cause fundamental changes in this tissue, and also exercise training as a desirable stressor increases the hypertrophy and angiogenesis of heart tissue. Therefore, the aim of the present study was to investigate the effect of six weeks of moderate-intensity endurance training on the levels of cortisol, MEF-2C, and MMP-2 gene expression in Wistar male myocardium.
Materials & Methods: Twenty adult male rats, 10-weeks old, weighing 243±8.2 g were examined in this experimental study. Animals were divided into two groups of 10 per group: training and control. The animals underwent six weeks of moderate-intensity endurance training for five days a week on a treadmill. Blood samples were taken before the first session and 24 hours after the last training session and cardiac tissue were extracted for measurement of MEF-2C and MMP-2 gene expression after the last session. Covariance analysis was used to compare the differences between cortisol level changes and independent t-test with a significant level of p<0/05 was used to examine changes in gene expression of MEF-2C and MMP-2.
Results: After six weeks of endurance training cortisol levels had no different change compared to pretest and control group with the significant level of (P=0.342) and (P=0.08), respectively. However, gene expression of both factors related to the angiogenesis of cardiac tissue MEF-2C and MMP-2 increased compared to the control group (p=0.016 and p=0.021, respectively).
Conclusion: It can be concluded that moderate-intensity endurance training has a positive effect on hypertrophy, and angiogenesis of rats' heart tissue and it seems that endurance training can be effective in preventing cardiovascular disease and it can cause beneficial structural adaptations for individuals.
 
Full-Text [PDF 3108 kb]   (631 Downloads)    
Type of Study: Research | Subject: Exercise physiology

References
1. Yuksel HS, Şahin FN, Maksimovic N, Drid P, Bianco A. School-Based Intervention Programs forPreventing Obesity and Promoting Physical Activity and Fitness: A Systematic Review. Int J Environ Res Public Health 2020; 17(1):347-69. [DOI:10.3390/ijerph17010347] [PMID] [PMCID]
2. Ai S, Koichiro O, Kazuhiro H, Yoshio N, Muraoka I. Psychological, social, and environmental factors to meeting physical activity recommendations among Japanese adults. Int J Behav Nutr Phys Act 2009; 6(1):60-72. [DOI:10.1186/1479-5868-6-60] [PMID] [PMCID]
3. Siddiqui NI, Nessa A, Hossain MA. Regular physical exercise: way to healthy life. Mymensingh Med J 2010; 19 (1):154-8. [PMID]
4. Rosano JM, Cheheltani R, Wang B, Vora H, Kiani MF, Crabbe DL. Targeted delivery of VEGF after a myocardial infarction reduces collagen deposition and improves cardiac function. Cardiovasc Eng Technol 2012; 3(2):237-47. [DOI:10.1007/s13239-012-0089-3] [PMID] [PMCID]
5. Staufenbiel SM, Penninx BW, Spijker AT, Elzinga BM, van Rossum EF. Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology 2013; 38(8):1220-35. [DOI:10.1016/j.psyneuen.2012.11.015] [PMID]
6. Del Corral P, Howley ET, Hartsell M, Ashraf M, Younger MS. Metabolic effects of low cortisol during exercise in humans. J Appl Physiol 1998; 84(3):939-47. [DOI:10.1152/jappl.1998.84.3.939] [PMID]
7. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009; 34(2):163-71. [DOI:10.1016/j.psyneuen.2008.10.026] [PMID]
8. Polli A, Ickmans K, Godderis L, Nijs J. When environment meets genetics: a clinical review of the epigenetics of pain, psychological factors, and physical activity. Arch Phys Med Rehabil 2019; 100(6):1153-61. [DOI:10.1016/j.apmr.2018.09.118] [PMID]
9. Weeks KL, McMullen JR. The athlete's heart vs. The failing heart: Can signaling explain the two distinct outcomes? Physiology 2011;26(2):97-105 [DOI:10.1152/physiol.00043.2010] [PMID]
10. Wade SM, Ohnesorge N, McLoughlin H, Biniecka M, Carter SP, Trenkman M,et al. Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis. EBioMedicine 2019; 47:402-13. [DOI:10.1016/j.ebiom.2019.08.043] [PMID] [PMCID]
11. Mounier R, Pialoux V, Roels B, Thomas C, Millet G, Mercier J, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol 2009; 105(4):515-24. [DOI:10.1007/s00421-008-0928-y] [PMID]
12. Maiti D, Xu Z, Duh EJ. Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells. Invest Ophthalmol Vis Sci 2008; 49 (8):3640-8. [DOI:10.1167/iovs.08-1760] [PMID] [PMCID]
13. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slowtwitch myofibers. J Clin Invest 2007; 117(9): 2459- 67. [DOI:10.1172/JCI31960] [PMID] [PMCID]
14. McGee SL. Exercise and MEF2-HDAC interactions. Appl Physiol Nutr Me 2007; 32(5): 852-6. [DOI:10.1139/H07-082] [PMID]
15. Khoshbin Nazdik M, Khazaei Koohpar Z, Sayad A. Investigation of TIMP-1 Gene Expression in Patients with Multiple Sclerosis (MS). J Arak Univ Med Sci 2017; 20(123): 22-30. (Persian) [Google Scholar]
16. Kim YW, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood 2014; 123 (5):625-31. [DOI:10.1182/blood-2013-09-512749] [PMID] [PMCID]
17. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88 (4):1243-76. [DOI:10.1152/physrev.00031.2007] [PMID] [PMCID]
18. Ardakanizade M. The effects of mid and long-term endurance exercise on heart angiogenesis and oxidative stress. Iran J Basic Med Sci 2018; 21(8): 800-5. [PMID] [PMCID]
19. Radosinska J, Barancik M, Vrbjar N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Medica 2017; 59:241-53. [DOI:10.23736/S0031-0808.17.03321-3] [PMID]
20. Zhu Y, Lee C, Shen F, Du R, Young WL, Yang GY. Angiopoietin-2 facilitates vascular endothelial growth factorinduced angiogenesis in the mature mouse brain. Stroke 2005; 36:1533-7. [DOI:10.1161/01.STR.0000170712.46106.2e] [PMID]
21. Van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrixmetalloproteinases in the lead. Cardiovasc Res 2008; 78(2):203-12. [DOI:10.1093/cvr/cvm102] [PMID]
22. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, et al. Matrix metalloproteinase activity is required for activity induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 2000; 279(4): 1540-7. [DOI:10.1152/ajpheart.2000.279.4.H1540] [PMID]
23. Suhr F, Brixius K, de Marées M, Bölck B, Kleinöder H, Achtzehn S, et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol 2007; 103(2):474-83. [DOI:10.1152/japplphysiol.01160.2006] [PMID]
24. Rullman E, Norrbom J, Stromberg A, Wagsater D, Rundqvist H, Haas T, et al. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 2009; 106(3):804-12. [DOI:10.1152/japplphysiol.90872.2008] [PMID]
25. McGee SL, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. Faseb J 2006; 20(2):348-9. [DOI:10.1096/fj.05-4671fje] [PMID]
26. Fathi M. Non change of Mef2c gene expression of rats left ventricle due to endurance activity. J Sabzevar Univ Med Sci 2018; 24(6): 45-51. (Persian) [URL]
27. Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, et al. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. J Diabetes Res 2015; 1-10. [DOI:10.1155/2015/457848] [PMID] [PMCID]
28. Vissing K, McGee SL, Roepstorff C, Schjerling P, Hargreaves M, Kiens B. Effect of sex differences on human MEF2 regulation during endurance exercise. Am J Physiol Endocrinol Metab 2008; 294(2): 408- 15. [DOI:10.1152/ajpendo.00403.2007] [PMID]
29. Akbari N, Azarbayjani MA, Delfan M. Effect of high intensity interval training (HIIT) on the gene expression of MMP-2, COL-III and myocardial function in type 2 diabetic rats. Research in Medicine 2020; 44(2): 415-21. [Google Scholar]
30. Leite RD, Durigan Rd CM, de Souza Lino AD, de Souza Campos MV, das Graças Souza M, Selistre-de-Araújo HS, et al. Resistance training may concomitantly benefit body composition, blood pressure and muscle MMP-2 activity on the left ventricle of high-fat fed diet rats. Metabolism 2013; 62(10):1477-84. [DOI:10.1016/j.metabol.2013.05.009] [PMID]
31. Mehri Alvar Y, Sayevand Z, Erfani Adab F, Heydari Moghadam R, Samavat Sharif MA, Karami S. The effects of five weeks' resistance training on some vascular growth factors in sedentary men. Sport Physiology 2016; 8 (29): 15-30. [Google Scholar]
32. Chae CH, Jung SL, An SH, Jung CK, Nam SN, Kim HT. Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats, ". Physiol Biochem 2011; 67(2): 235-41. [DOI:10.1007/s13105-010-0068-9] [PMID]
33. Goss G. Theory and Practice of Histological Techniques. LWW; 2009. [DOI:10.1097/PAS.0b013e3181805089]
34. Tavassoli H, Tofighi A, Hossein panah F, Hedaytai M. Appetite and exercise influence of 12 weeks of circuit resistance training on the nesfatin-1 to acylated ghrelin ratio of plasma in overweight adolescents. Iran J Endocrinol Metab 2014; 15 (6):519-26. (Persian) [Google Scholar]
35. Daly W, Seeqers C, Rubin D, Hackney A. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur J Appl Physiol 2005; 93(4):375-89. [DOI:10.1007/s00421-004-1223-1] [PMID]
36. Tanskanen MM, Kyröläinen H, Uusitalo AL, Huovinen J, Nissilä J, Kinnunen H, et al. Serum sex hormone-binding globulin and cortisol concentrations are associated with overreaching during strenuous military training. J Strength Cond Res 2011; 25(3):787-97. [DOI:10.1519/JSC.0b013e3181c1fa5d] [PMID]
37. Daly W, Seegers CA, Rubin DA, Dobridge JD, Hackney AC. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur J Appl Physiol 2005; 93(4):375-80. [DOI:10.1007/s00421-004-1223-1] [PMID]
38. Bijeh N, Moazami M, Ahmadi A, Samadpour F, Zabihi A. Effect of 6 months of aerobic exercise training on serum leptin, cortisol, insulin and glucose levels in thin middle-aged women. Trauma Mon 2011; 9(1): 53-9. [Google Scholar]
39. Shahidi F, Pirhadi S. The effect of physical exercise and training on serum leptin levels. Razi J Med Sci 2014; 21(126):1-14. [URL]
40. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408(6808): 106-11. [DOI:10.1038/35040593] [PMID] [PMCID]
41. Vissing K, McGee SL, Roepstorff C, Schjerling P, Hargreaves M, Kiens B. Effect of sex differences on human MEF2 regulation during endurance exercise. Am J Physiol Endocrinol Metab 2008; 294(2):408-15. [DOI:10.1152/ajpendo.00403.2007] [PMID]
42. McGee SL, Sparling D, Olson AL, Hargreaves M. Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle. FASEB J 2006; 20(2):348-9. [DOI:10.1096/fj.05-4671fje] [PMID]
43. Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, et al. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 2002; 8(11): 1303-9. [DOI:10.1038/nm789] [PMID]
44. Czubryt MP, Olson EN. Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 2004; 59:105- 24. [DOI:10.1210/rp.59.1.105] [PMID]
45. Nebbiso A and et al. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. Embo Reports 2009; 10(7): 776-82. [DOI:10.1038/embor.2009.88] [PMID] [PMCID]
46. Piraki P, Hematfar A, Behpour N, Samavati Sharif M. The Effect of 10 Weeks of Exhaustive Swimming on Gene Expression of Histone Deacetylase-4 and Myocyte Enhancer Factor-2c inLeft Ventricle in Male Rats. J Sports Sci 2018; 10(2): 249-61. [Google Scholar]
47. Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, et al. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI insight 2017; 2(16): 1-16. [DOI:10.1172/jci.insight.91068] [PMID] [PMCID]
48. Taye A, Abouzied MM, Mohafez OM. Tempol ameliorates cardiac fibrosis in streptozotocin induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Naunyn Schmiede bergs Arch Pharmacol 2013; 386(12):1071-80. [DOI:10.1007/s00210-013-0904-x] [PMID]
49. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001; 7(1):14-23. [DOI:10.1007/BF03032599] [PMID]
50. Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. Faseb J 2011; 25(3):1106-17. [DOI:10.1096/fj.10-172924] [PMID] [PMCID]
51. Akbari N, Peeri M, Azarbayjani MA, Delfan M. Comparison of the effect of 8 weeks of continuous and high intensity interval training on the gene expression of TIMP-2 and MMP-2 in male diabetic rats. Razi J Med Sci 2019; 26(10):107-16. (Persian) [Google Scholar]
52. Shon SM, Park JH, Nahrendorf M, Schellingerhout D, Kim JY, Kang BT, et al. Exercise attenuates matrix metalloproteinase activity in preexisting atherosclerotic plaque. Atherosclerosis 2011; 216(1):67-73. [DOI:10.1016/j.atherosclerosis.2011.01.036] [PMID]
53. Kadoglou N, Vrabas I, Sailer N, Kapelouzou A, Fotiadis G, Noussios G, et al. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metabol 2010; 36(2):144-51. [DOI:10.1016/j.diabet.2009.11.004] [PMID]
54. Hadler-Olsen E, Iren Solli A, Hafstad A, Winberg JO, Uhlin-Hansen L. Intracellular MMP‐2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol 2015; 230(1): 160-9. [DOI:10.1002/jcp.24694] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.