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Protein Corona on Extracellular Vesicles: Formation and Biological Function
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Abstract
Extracellular Vesicles (EVs) secreted by cells have become important agents of communication between cells. EVs 
promote tissue repair by transferring their molecular contents to target cells, influencing signaling pathways, metabolic 
functions, and gene expression. Recent studies indicate that numerous extracellular proteins interact with the surface 
of EVs dynamically, forming a layer referred to as the protein corona. The protein corona interacts with cell-surface 
receptors and enhances the specific absorption of EVs, thus affecting their therapeutic efficacy. The wide range of 
biomolecules can interact with the EVs’ surface, and the thickness of these coronal proteins is significantly different 
within biological fluids, impacting EVs’ kinetics, docking, uptake, biodistribution, and finally cell signaling. The 
elimination of the coronavirus protein from EVs remains a primary challenge and requires further study. Understanding 
the properties of the corona protein and eliminating it will be vital for optimizing cell-free therapies, opening new 
opportunities for progressing regenerative medicine. This review discusses the biogenesis of EVs and the formation 
of the protein corona. In addition, this review sheds light on the protein corona of EVs as a key factor influencing the 
function of EVs.
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1  Introduction

Cells release different types of extracellular vesicles 
(EVs) to communicate with each other.[1] EVs and 
secreted proteins, including growth factors and 
cytokines, have attracted interest as extracellular 
agents in cellular processes that support the functional 
restoration of damaged tissues.[1] EVs are nanoscale 
particles enclosed by a lipid bilayer that transport various 
molecular cargoes (proteins, RNAs, DNAs, signaling 
molecules) within their lumen.[2] EVs released by cells 
deliver their contents into the cytoplasm of target cells, 
thereby influencing intracellular activities such as signal 
transduction, metabolism, transcription, and translation.
[3] EVs are found in many biological fluids.
In addition, EVs possess surface proteins that can either 
be integrated through transmembrane domains within 
the lipid bilayer or attached to the EV surface from 
biological fluids through non-covalent interactions.[4] The 
peripheral proteins present on EVs interact with receptors 
on the surfaces of recipient cells, which is crucial for EV 
targeting and internalization.[4] Many secretory proteins 
are known to accumulate around the EV surface through 
sequential protein–protein interactions, generating a 

stable arrangement referred to as the “protein corona.”[4,5] 
Recent findings indicate that the protein corona is vital 
in mediating the positive impacts of EVs on tissue repair 
mechanisms.[4,5]

Close contact with diverse proteins and factors results in 
the creation of a protein-rich layer on the nanoparticle 
surface in biological fluids. This layer, referred to as the 
protein corona, is formed through various mechanisms.
[6] Because of the similarities in size, structure, and 
active surface properties between synthetic nanoparticles 
and EVs, it is reasonable to suggest that protein corona 
formation may partially, but not entirely, influence the 
dynamic behavior of EVs.[7] Recent data indicate that 
the development of protein corona around nanoscale 
biomaterials can alter the fate of signaling cargoes in in 
vivo environments.[8]

Overall, it is likely that the formation of protein corona 
around EVs can alter their physiological properties and 
potentially their targeting ability. Nonetheless, numerous 
questions concerning the molecular basis of EV-mediated 
tissue regeneration remain unresolved and require further 
investigation. In this review, we describe EV terminology 
and biogenesis. In addition, we discuss protein corona 
formation and its impact on EV biology.
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Figure 1  Biogenesis and release of exosomes from a cell. Exosomes are formed from multivesiclular body (MVB) 
within the cytoplasm, where different complexes such as ESCRT0, I, II, and III participate in loading and sort-
ing cargo into exosomes. MVB may fuse with the plasma membrane and release exosomes into the extracellu-
lar space. Different Rab proteins (Rab27) and SNARE proteins contribute to the trafficking and fusion of MVB 
within the cytoplasm. Exosomes contain many molecules both in their lumen and surface. This figure was used 
from an article according to the Creative Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium.[15]
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2 Extracellular Vesicles

Extracellular Vesicles (EVs) consist of various vesicles 
originating from different cell types, produced via 
several mechanisms.[2] These vesicles are essential for 
intercellular communication, as they enable the transfer 
of biological signals such as non-coding RNAs, coding 
RNAs, DNA fragments, proteins, and lipids to target 
cells.[1,9,10] Exosomes are nanosized extracellular vesicles 
(<200 nm) with a lipid bilayer, acting as mediators of 
intercellular communication and playing an important 
role in cellular physiology.[1,9,10] (Figure 1). They are 
found in various bodily fluids.[11,12]

According to the International Society for Extracellular 
Vesicles (ISEV), exosomes are typically categorized 
as small EVs that originate from multivesicular bodies 
(MVBs).[13] However, the term “exosomes” must be 
applied carefully and requires specific characterization 
techniques.[13] The most recent update of the Minimal 
Information for Studies of Extracellular Vesicles (MISEV) 
guidelines was published in 2023 as MISEV2023.[13] The 
latest updates are summarized in Figure 2.

In practice, commonly utilized isolation protocols—
such as differential ultracentrifugation, density gradient 
centrifugation, size-exclusion chromatography, and 
polymer-based precipitation—primarily separate EVs 
according to their physical characteristics, resulting in 
heterogeneous preparations rather than complete isolation 
of specific subtypes.[14] Moreover, surface markers 
commonly used to characterize EV subtypes, such as 
tetraspanins (CD9, CD63, CD81), are not restricted to a 
single vesicle class and exhibit considerable overlap.[14]

Therefore, it is advisable to use the broader term 
“extracellular vesicles” and provide detailed information 
regarding operational features (e.g., size, surface 
markers) and isolation techniques employed, instead 
of defining strict subtype identities.[2] This approach 
enhances transparency and reproducibility, underscoring 
the importance of cautious interpretation of EV subtypes 
and the need for ongoing methodological refinement.

3  The protein corona of EVs

The EV surface continuously interacts with surrounding 
biological fluids, primarily interstitial fluid and blood 
plasma.[16] Various chemical and physical interactions 
occur between the proteins in these fluids and molecules 
on the EV surface, leading to the attachment of different 
proteins.[16] The attached proteins accumulate and form 
a corona-like layer surrounding the EV surface, known 
as the “protein corona,” which appears as a 10–20 nm 
shadow in negative-staining transmission electron 
microscopy.[17,18]

Each EV subtype possesses specific mechanisms of 
biogenesis and release, resulting in unique patterns 
of protein corona development. Ectosomes emerge 
directly from the plasma membrane, primarily attracting 
secretory proteins from the extracellular space to their 
surface.[19] In contrast, the surface of exosomes initially 
interacts with soluble proteins within multivesicular 
bodies (MVBs), forming a layer called the “innate 
protein corona.”[20] Upon release, exosomes continue 
to interact with secretory proteins in the extracellular 
environment, incorporating some into the existing innate 
protein corona and developing a new “acquired protein 
corona.”[20] Consequently, the corona layer increases 
EV dimensions,[7,18] making its formation detectable 
using techniques that assess nanoparticle size, such as 
nanoparticle tracking analysis.[7,21]

The protein corona also alters the electrical potential 
between EVs and surrounding fluids, referred to as the 
“zeta potential.”[7,22] EVs with an intact corona show 
zeta potential values between -5 mV and -50 mV;[7,23] 
however, the absolute value declines as corona thickness 
decreases.[24] Thus, variations in zeta potential may serve 
as a marker for changes in protein corona size.
Different lipids, proteins, and carbohydrates on the 
EV surface selectively interact with soluble proteins, 
resulting in unique corona layers with distinct molecular 
profiles.[25] The outer EV membrane generally includes 
phosphatidylserine, an anionic lipid that attracts 
fibroblast growth factors and Raf-1 via electrostatic 
interactions.[25,26] Integrins are abundant surface proteins 
that contain domains such as the RGD-binding domain, 
which interacts with extracellular matrix (ECM) proteins 
like vitronectin and laminin, and metal ion-dependent 

Figure 2  Nomenclature hierarchy of EP. Extracellular particles 
consist of both vesicular and non-vesicular types. This illustra-
tion shows differences that can be identified among categories of 
EPs, along with instances of potential naming conventions. EP: 
extracellular particle; EV: extracellular vesicle; SV: synthetic 
vesicle; ACDV: vesicle derived from artificial cells; NVEP: ex-
tracellular particle without vesicles. This figure was used from 
a previously published article.[2] This is an open-access article 
distributed under the terms of the Creative Commons CC BY li-
cense, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.
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adhesion sites that associate with the GFOGER motif 
of collagen.[27] Tetraspanins, prevalent on EV surfaces,[2] 
contain conserved cysteine residues in extracellular loops 
and harbor thiol groups that can react with thiols of other 
proteins, such as albumin, depending on their redox 
state.[25,28] Heparan sulfate, a common polysaccharide on 
EV surfaces as proteoglycans,[2] interacts with growth 
factors and ECM components possessing heparin-
binding domains, including fibroblast growth factors and 
fibronectin.[29,30]

Interactions between the EV surface and external proteins 
initially generate a thin layer, which becomes denser by 
sequential recruitment of soluble proteins via protein–
protein interactions. Phosphatidylserine recruits milk fat 
globule-epidermal growth factor 8 (MFGE-8) through 
electrostatic and hydrophobic interactions,[31] while its 
serine head-group binds annexins.[26] Extracellular nucleic 
acids are attracted by nucleic acid-binding proteins, 
such as AIFM1, CDH5, and albumin,[32,33] forming the 
“biocorona,” which contains DNA, RNA, and proteins.
EVs can be characterized by size, sedimentation rate, 
density, and molecular weight thresholds (kDa).[2,19] 
Due to its dynamic and non-covalent nature, the protein 
corona is highly sensitive to processing methods.[18] 
Intensive concentration or separation techniques may 
affect protein aggregation levels and corona composition, 
influencing EV bioactivity and therapeutic efficacy.[18] For 
example, using molecular weight cut-off filters during 
EV concentration selectively captures proteins, leading 
to variability in corona composition.[7,18] Similarly, size-
exclusion chromatography can partially remove densely 
packed coronas, reducing corona-mediated biofunctions.
[17,18] Ultracentrifugation, which relies on high centrifugal 
forces, may also cause substantial loss or alteration 
of corona constituents, affecting subsequent cellular 
interactions and biological responses.[17,18]

The impact of the protein corona on EV therapeutic 
efficacy and remaining knowledge gaps are illustrated 
in Figure 3. These findings underscore the necessity of 
customized concentration and purification methods that 
preserve or deliberately modify the protein corona to 
achieve intended functional outcomes. In some cases, 

reconstituting the corona post-isolation by incubating 
EVs with selected soluble proteins or recovered fractions 
may restore or fine-tune its composition,[7,18] improving 
reproducibility and enabling more precise therapeutic 
applications.

4  Conclusion

Different proteins in the corona layer influence the 
extracellular roles of EVs and play a crucial role in 
the uptake of cargoes by recipient cells, with their 
composition and function being significantly impacted 
by the chosen isolation methods. The exact functions 
and processes of the protein corona remain largely 
unclear and require more clarification. Nonetheless, this 
variability, dependent on context, also poses considerable 
challenges, such as EVs diversity and the requirement for 
accurate control and standardization of corona profiles 
for clinical application. Generally, our understanding of 
coronaviruses and their elimination is still in its early 
stages, leaving some challenges in this area that require 
additional study. There is a need for standardization of 
coronavirus characterization and engineering methods. 
Tackling these challenges necessitates a thorough 
understanding of the mechanisms behind the formation 
and regulation of the protein corona, the intricate 
interactions between the constituent proteins, and the 
consequent changes in EVs behavior. Future endeavors 
should concentrate on creating sophisticated methods to 
deliberately design the EVs surface and regulate protein 
corona formation, allowing for accurate management of 
EVs bioactivity and safety characteristics.
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