کپیش ضد خستگی: یک راه حل ارگونومیک جهت کاهش کمردرد ناشی از ایستادن طولانی مدت

جواد آقازاده ۱، محمدرضا آذـانی ۴، حمیدرضا خلخالی ۴، تیمور لهواری ۴، ایرج محبی ۴

تاریخ دریافت ۰۷/۰۷/۱۳۹۲، تاریخ پذیرش ۰۹/۰۹/۱۳۹۲

چکیده
پیش زمینه و هدف: ایستادن طولانی مدت در وضعیت ثابت طی انجام وظایف شغلی با ایجاد کمردرد در ارتباط است. افزایش کپیش ضد خستگی عضلات گلوتوس ممکن است در افراد سالمند بیشتر از ایستادن طولانی مدت به طور طبیعی شکل گیرد. تغییرات ایجاد شده در چشم‌انداز کمردرد به عنوان یک ویژگی تغییر گسترده و اصلح سطح زیر ایجاد شده در محیط می‌باشد. این مطالعه به هدف بررسی تأثیر کپیش ضد خستگی بر روی اندازه‌گیری عضلات گلوتوس مسکن در افراد مورد نیاز و ارزیابی فشار مغز خستگی اندازه‌گیری شد.

مواد و روش کلی: ۱۶ شرکت کننده دوران ساکنه‌کردن در حالیکه وظایف علمی سیستم‌های شده‌باین انجام می‌دادند به ترتیب در ده و وضعیت به مدت دو ساعت ایستادن در حالت و وضعیت در انتظار ایستادن و گزارش کمردرد و میزان ذهن در انجام کمک به مورد نیاز شکل گیرد. (Surface EMG) و مقياسی صری در (VAS) در نمای بانوی زن و در ناتمامیت حرکتی که در دو وضعیت مختلف ایستادن بر روی سطح عادی سخت و ایستادن بر روی کپیش ضد خستگی اندازه‌گیری شد.

یافته‌ها: نتایج این مطالعه در ۱۵ نفر از شرکت کننده نشان داد کپیش ضد خستگی عضلات گلوتوس در ۱۴ نفر از ۱۰۰والدی و وضعیت عدم مشاهده شد (P = .037). نتایج طبیعي اجرای این آزمایش با تأثیر کپیش ضد خستگی بر روی کمردرد با استاندارد تغییر بیشتر از ۰.۵ میلی‌متر در VAS نشان داد. داده‌ها مورد تأثیر نگذاری در پیاده‌سازی مقدماتی بکر در بسیاری ایستادن در دو وضعیت مختلف کمردرد و همچنین کپیش ضد خستگی عضلات گلوتوس ممکن است در دو وضعیت مختلف کمردرد و میزان فشار را ترجیح دهد.

نتیجه‌گیری: نتایج این مطالعه حاضر به نظر می‌رسد کپیش ضد خستگی می‌تواند در کاهش میزان درد ناحیه کمر و به طبع آن کمردرد، میزان فشار را در آمادگی ایجاد شد.

کلیدواژه‌ها: کمردرد، ایستادن طولانی مدت، کپیش ضد خستگی، کواکتیونی عضلات

مجله پزشکی ارومیه، دوره پیست و چهارم، شماره دوازدهم، ص ۹۵۵-۹۶۴، اسفند ۱۳۹۲

آدرس مکاتبه: ارومیه، نازار، دانشگاه علوم پزشکی ارومیه، دانشکده پزشکی بهداشت، گروه بهداشت حرفه‌ای، تلفن: +۲۱۴۶۰۲۷۲، Email: mohebbi_iraj@yahoo.co.uk

۱ دانشیار جراحی مغز و عصب، دانشگاه علوم پزشکی ارومیه
۲ کارشناس ارشد رانگیونی، دانشگاه بهداشت، دانشگاه علوم پزشکی ارومیه
۳ استادیار بیولوژیک، دانشکده مهندسی پزشکی، دانشگاه علوم پزشکی ارومیه
۴ استادیار آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی ارومیه
۵ استادیار بهداشت حرفه‌ای، دانشکده بهداشت، دانشگاه علوم پزشکی ارومیه
۶ استاد طب کار، دانشکده بهداشت، دانشگاه علوم پزشکی ارومیه (نوبت مسئول)
مقدمه

کمپرسی از جمله مفاهیمی است که در مطالعه عضلانی، اکستروتکسی و کمپرسی بر روی استاتس اکستروتکسی عضلانی مرتبط با کار می‌باشد. شیوع کمپرسی در جامعه بین ۶۰۰ تا ۷۵۰ درصد بروز می‌یابد. در این مقاله به کمک بررسی نتایج یک آزمون به‌طور کپیتیک بی‌خاطری، توانایی کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.

(1) مطالعه کیستوفیلیکوئیس نشان داده که در بین استاتس اکستروتکسی عضلانی، توانایی کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.

(2) یک آزمون به‌طور کپیتیک بی‌خاطری، توانایی کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.

(3) مطالعه ای که در بین پتیتوپسی، کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.

(4) یک آزمون به‌طور کپیتیک بی‌خاطری، توانایی کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.

(5) یک آزمون به‌طور کپیتیک بی‌خاطری، توانایی کمپرسی و فاکتورهای کمپرسی از جمله مطالعات جلوگیری از استاتس اکستروتکسی بررسی شده است.
کشفیه‌ای سخت‌کشی‌کننده بی‌هال (کوبینوکی، جهت کاهش، کمکرده) همزمان با نیز نتیجه‌ی خودرسندگی که از بین گرفتار و کمکرده در مرگ یا نجات تفتیضی، در نوشتاری که از اشتراک‌های ارگونومیکی بنابر‌این در مورد کار در ایستادن طولانی متعدد در این‌جا که بسیاری از زمان‌های می‌باشد، می‌تواند مقایسه قرار گرفته شده است.

1. Elasticity
2. Paraspinal muscles
3. Surface ElectroMyoGraphy
کوکچه، طبقه‌بندی کردن انجام کارهای فکری و ایستادن بدون فعالیت و تعلیم اجتماعی (طوق بسته کردن یا بودن این وظایف به سرعت مصرفی) در دوره‌های 30 دقیقه‌ای در طول 2 ساعت ایستادن انجام شد. و در هر سه ساعت از فرد خواشتی که یکی از وظایف را به جمعیت فرمه کنی انتخاب نماید.

داده‌های الکترومیوگرافی در دوره‌های متوالی 15 دقیقه‌ای در پایان هر 15 دقیقه از افراد خواسته شد که میزان ذهنه در دورآوری کمرنش را بر روی VAS (داو-۰) نشان دهد. شایان ذکر است که هر این مطالعه جهت جلوگیری از ایجاد تنش در هر مربوطه VAS در برگرفته کننده بود. این مطالعه 4 شرکت کننده از جمله 2 شرکت کننده از جمله 2 شرکت کننده و 1 شرکت کننده از جمله 2 شرکت کننده. در انتهای این گزارش که شرکت کننده‌ها در هر دوره و وضعیت استادان در آنها در مورد وضعیتی که ترجیح دهنده سوال شد.

شکل (1): نمودار زمانی جمع‌آوری داده‌ها در طول 2 ساعت استادان.

تحلیل داده‌ها:

نخست میزان بسته‌پذیری VAS قبل از شروع تست یا قبل از استادان (بیماری کم و دوم) به طور معنی‌داری از هم‌بود تخته‌های مختلف دکر که در تلاش برای میزان و فیزیک و آزمایش موثر و ارزشمندی به سبب وظایف خاص و پیشگیری که در میزان ذهنی در دورآوری کمر ایجاد شده است، ناشی از استادان بوده. سپس به همین سیاست مثبت تغییرات میزان VAS در دوره و وضعیت دو، شاخص کلی برای نمره‌های گزارش است. VAS در طول 2 ساعت استادان تغییر داشت. یکی از این دو شاخص، به‌بینی میزان تغییرات در Nمره‌های VAS. Max طول دوره استادان نسبت به VAS می‌باشد.

1 Maximum Voluntary Contraction
کوانتیتیوشن‌های 9 کانه از طول دو ساعت استاندارد در هر VAS (Sum VAS) در هر طول استاندارد نسبت به میانگین دوم میانگین، همانند میانگین دو و در این مورد از طول 2 ساعت استاندارد، به دو گروه در و تفاوت در توزیع نشان دهنده تغییرات منجر به عوامل پاسخ‌گویی به این جدیت بود. به گروه بیشترین میزان همانندی. در گروه دوم، از گروه بیشترین همانندی در طول 100نیمه می‌توان به این باخ که اینکه گروه VAS در سطح عادی بر اساس اندازه کلیک شده جهت روی داده‌ای از گروه VAS به میزان درد شده بود یا هنگامی که میزان شده به دو گروه پاسخ‌گو و غیر پاسخ‌گو توسط میزان درد شده.

در طول استاندارد و تفاوت در توزیع نشان دهنده تغییرات منجر به عوامل پاسخ‌گویی به این جدیت بود. به گروه بیشترین میزان همانندی در طول 100نیمه می‌توان به این باخ که اینکه گروه VAS در سطح عادی بر اساس اندازه کلیک شده جهت روی داده‌ای از گروه VAS به میزان درد شده.

یافته‌ها

در مطالعه حاضر، از 15 شرکت کننده، 1 تریال عمل محققانه سیگنال‌های الکتریکی وشکل‌گیری این آماده‌گردید و در جاهایی که توسط از آموزش فرم‌های 15 در آموزش T-test نبود. درآمده و در آمده در آمده است.

جدول (1): مشخصات دموگرافیک شرکت کننده

| متغیر | کانگژکت کرت | تعداد مشخصات دموگرافیک |یافته‌ها

<table>
<thead>
<tr>
<th></th>
<th>3 ضریب</th>
<th>صفر</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>27–29</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>قدر (متر)</td>
<td>187–191</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>وزن (کیلوگرم)</td>
<td>89–92</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>شاخص توده بدنی</td>
<td>21–25</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

جهت محاسبه ضریب کوواریانس (Co-activation) Coactivation coefficient (CCI) که میزان کیفیت همزمان دو عضله را نشان می‌دهد، از میان 120 میزان محاسبه شده در هر 30 نیمه برای هر دو، در واحد 2 و در رابطه 2 قرار NRMS در این بین میزان Co-activation coefficient (CCI) گرفته باید برای هر خودکم متناسب با در وضعیت 9 عدد در فاصله 15 دقیقه‌ای به دست آمد و در ادامه از میزان

1 Root Mean Square
پیدا کرده است و این متغیر در هر دو وضعیت به طور معنی‌داری تحت تأثیر زمان قرار دارد ($p > 0.05$).

در مقایسه میانگین تغییرات نمروی VAS در وضعیت 1 و وضعیت 2 نتایج آزمون ویکلان در سطح معنی‌داری $p = 0.001$ قابل قبول است. میانگین تغییرات نمروی VAS در طول دو ساعت ایستادن نسبت به VAS مبنای دوم (Max VAS) و مجموع تغییرات انرژی (Sum VAS) با نتایج غیر قابل قبول بود. نتایج نشان داد که در هر دو شاخه: بیشترین میانگین نمروی VAS در طول دو ساعت ایستادن هنگام صورت گرفتن نگرانی از مسیر روند تغییرات میانگین در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود.

در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود. نتایج نشان داد که در هر دو شاخه: بیشترین میانگین نمروی VAS در طول دو ساعت ایستادن هنگام صورت گرفتن نگرانی از مسیر روند تغییرات میانگین در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود.

در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود. نتایج نشان داد که در هر دو شاخه: بیشترین میانگین نمروی VAS در طول دو ساعت ایستادن هنگام صورت گرفتن نگرانی از مسیر روند تغییرات میانگین در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود.

در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود. نتایج نشان داد که در هر دو شاخه: بیشترین میانگین نمروی VAS در طول دو ساعت ایستادن هنگام صورت گرفتن نگرانی از مسیر روند تغییرات میانگین در وضعیت 1 و وضعیت 2 نسبت به VAS مبنای دوم (Sum VAS) با نتایج غیر قابل قبول بود.
وضعیت ۱ در گاهت ابتلا به کمردرد مشاهده نشد (P = .۲۳). شایان ذکر است در هر دو وضعیت ویرژیئه‌های دموگرافیک شرکت‌کنندگان در دو گروه درصد (فاقد) از لحاظ آماری مشابه بودند (P = .۲۳) (جدول ۴) و چنان‌که در گروه در رد و فاقد درد در این دو وضعیت در طول دو ساعت ایستادن مورد آنالیز قرار گرفت، مشاهده گردید، در هر دو گروه میانگین نمره‌ی VAS در طول زمان دارای یک روند افزایشی است و به طور معنی‌داری تحت تأثیر زمان قرار دارد (P < .۰۵). این در حالی بود که در گروه فاقد درد این میزان در سطح پایین تری نسبت به گروه در رد قرار داشت (متوسطه ۳ و ۵). همچنین برای میانگین تغییرات عضلات گلوتانوس میدویس دو طرف در طول ایستادن در هر دو وضعیت همانندی که مشاهده شد در وضعیت ۱، معنی‌دار نبوده و روز سطح عادی سخت، تعداد ۱۰ نفر از ۱۵ نفر شرکت کننده در مطالعه در گروه درد و ۵ نفر در گروه فاقد درد گرفتند و در وضعیت ۲ معنی‌دار ایستادن بر روی کامپیوتر ضد خسگی عادت کسو گاهت تعداد افراد مبتلا به کمردرد در ۵ نفر و ایستاده معنی‌داری نسبت به

جدول (۲): مشخصات دموگرافیک شرکت کنندگان در گروه‌های درد/فاقد درد در وضعیت (میانگین±میانگین‌های ضریب خطا)

<table>
<thead>
<tr>
<th>وضعیت‌های ایستادن</th>
<th>کروه‌ها (عدد)</th>
<th>شاخص توجه بدنی (کیلوگرم/متر۲)</th>
<th>گروه‌های ایندیا</th>
<th>VAS</th>
<th>VAS</th>
<th>VAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه درد (۱)</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه فاقد درد (۵)</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه درد (۱)</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>گروه فاقد درد (۵)</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td>۲۲±۲۱/۸</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نمودار (۴): روند تغییرات میانگین تنری VAS نسبت به مبدا در گروه درد و فاقد درد در وضعیت ۲ (میانگین ± ضریب خطای)

نمودار (۵): روند تغییرات میانگین ضریب کواکتبیشی عضلات گلونتوس مدیوس دو طرف در گروه درد و فاقد درد در وضعیت ۱ (میانگین ± ضریب خطای)

نمودار (۶): روند تغییرات میانگین ضریب کواکتبیشی عضلات گلونتوس مدیوس دو طرف در گروه درد و فاقد درد در وضعیت ۲ (میانگین ± ضریب خطای)

پیگیری قرار گرفتن، مشاهده شد، تعداد ۵ نفر از شرکتکنندگانی که در وضعیت ۱ در گروه درد قرار داشتند، بر اساس آستانه اشاره هنگامی که ۱۰ نفر شرکتکننده گروه درد و ۵ نفر شرکتکننده گروه فاقد درد در وضعیت ۱ در وضعیت دوم مورد
به‌عنوان مثال، در وضعیت ۲ در غروه فاقد درصد قرار گرفتن (گروه پاسخگو) و ۵ نفر از شرکت‌کنندگان همچنان در غروه درصد بالینی ماندند (گروه غیر پاسخگو)، در این مقایسه همه‌ای افرادی که در وضعیت ۱ در غروه فاقد درصد قرار داشتند، در وضعیت ۲ نیز همچنان در غروه فاقد درصد بودند.

در بررسی تأثیر کیفیتی ضد خستگی بر روی غروه فاقد درصد CCI، میزان CCI در ۱۰ نفر شرکت‌کنندگی غروه درصد و ۵ نفر شرکت‌کنندگی غروه فاقد در وضعیت ۲ در هر دو وضعیت (میانگین± ضریب خطای) در وضعیت ۱ در هر دو وضعیت (میانگین± ضریب خطای) به‌صورت زیر شown است:

![نمودار ۷: میزان CCI در ۱۰ نفر شرکت‌کنندگی غروه درصد و ۵ نفر شرکت‌کنندگی غروه فاقد در وضعیت ۲ در هر دو وضعیت (میانگین± ضریب خطای)](image1)

![نمودار ۸: MAX VAS (mm) در ۵ نفر غروه پاسخگو و ۵ نفر غروه غیر پاسخگو CCI در وضعیت ۲ در هر دو وضعیت (میانگین± ضریب خطای)](image2)

بحث و نتیجه‌گیری

Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to

References:

Downloaded from umj.umsu.ac.ir at 13:38 +0430 on Tuesday May 5th 2020

ANTI-FATIGUE FLOOR MAT: AN ERGONOMIC SOLUTION FOR ALLEVIATING LOW BACK PAIN ASSOCIATED WITH PROLONGED STANDING

Javad Aghazadeh1, Mahmoud Ghaderi2, Mahmood Reza Azghani3, Hamid Reza Khalkhali4, Teimour Allahyari5, Iraj Mohebbi6*

Received: 29 Sep, 2013; Accepted: 16 Nov, 2013

Abstract

Background & Aims: Prolonged standing in static posture during occupational tasks has been associated with low back pain (LBP). Increased bilateral gluteus medius (GM) muscles co-activation is considered to be the most predisposing factor for LBP development during prolonged standing in asymptomatic individual. Change and modify flooring in occupational environment is common ergonomic intervention to alleviate problems caused by prolonged standing such as LBP. The purpose of this study was to investigate the effect of anti-fatigue floor mat on bilateral GM co-activation pattern and subjective pain in the low back.

Materials & Methods: The study was conducted on 16 asymptomatic participants while they were doing simulated light occupational tasks in two conditions for two hours as follows: 1) standing on a hard floor, 2) standing on an anti-fatigue floor mat. In any standing condition, at the beginning of standing and every 15 minutes until 120 minutes, muscle co-activation of bilateral GM and subjective pain in the low back region has been collected respectively by surface electromyography (EMG) and visual analog scale (VAS).

Results: There were no significant difference in bilateral GM co-activation pattern in participants between two conditions (P=0.776), but anti-fatigue floor mat presented a significantly decreased level of subjective pain in the low back. Although 73% of participants were indicating that they would use the anti-fatigue mat if they were in an occupational setting that required prolonged standing work, but results about the effect of anti-fatigue floor mat on LBP based on an increase of >10mm on VAS threshold indicated that this intervention has no significant effect on decreased LBP development and co-activation of bilateral GM muscles in both pain developer and non pain developer groups.

Conclusion: Apparently anti-fatigue mat were useful in decreasing LBP, although objectively it did not have any significant changes in muscle activity patterns that associated with LBP.

Keywords: Low back pain, Prolonged standing, Anti-fatigue floor mat, Muscle co-activation

Address: Department of Occupational Health, Urmia University of medical Sciences, Urmia, Iran
Tel: 0441-2220633
Email: mohebbi_iraj@yahoo.co.uk

SOURCE: URMIA MED J 2014: 24(12): 955 ISSN: 1027-3727

1 Associate Professor of Neurosurgery, Tabriz University of Medical Sciences, Tabriz, Iran
2 Master in Ergonomics, Urmia University of Medical Sciences, Urmia, Iran
3 Assistant Professor of Biomechanic, Sahand University, Tabriz, Iran
4 Assistant Professor of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
5 Assistant Professor of Biostatistic, Urmia University of Medical Sciences, Urmia, Iran
6 Professor of Occupational Medicine, Urmia University of Medical Sciences, Urmia, Iran
(Corresponding Author)