بررسی الگوی حساسیت و مقاومت آنتی بیوتیکی در میکروگانیسم‌های اینژلیه شده از بیماران بستری در بیمارستان طالقانی ارومیه از سال ۱۳۸۸ تا ۱۳۹۰

ظرفی یوزه‌سن و هدف: وجود باکتری‌های مقاوم در بخش‌های مختلف بیمارستانی و مشکلاتی که در درمان بیماران به وجود آمده ارائه، بازار و ادّلای دقیق این باکتری‌ها و الگوی حساسیت و مقاومت آنتی بیوتیکی آن‌ها را ضروری می‌کند. این یوزه‌سن به هدف انجام الگوی حساسیت و مقاومت آنتی بیوتیکی در میکروگانیسم‌های اینژلیه شده از بیماران بستری در بیمارستان صورت گرفته است.

روش‌گزار: این یوزه‌سن توصیفی مقطعی با هدف تعیین الگوی حساسیت و مقاومت آنتی بیوتیکی در میکروگانیسم‌های اینژلیه شده از بیماران بستری در بیمارستان طالقانی ارومیه از سال ۱۳۸۸ تا ۱۳۹۰ انجام شد و در این نمونه‌ها کشت بیماران بستری ارسال شده از بخش‌های مختلف بیمارستان شهید ادرار، انجام شد. در این انجام شد، نتایج یافته‌ها به ارزیابی مقایسه با روش‌های آزمایش‌های دیگر، در خود چک‌گردانده شد. در این مدت استخراج نشان داد که برای آزمایش‌های جمع‌آوری‌های جمعیتی به در حالی تجزیه و تحلیل فراخوانده شد.

نتایج: از همه نمونه‌های کشت انجام شده در مدت ۲ سال ۹۴ مورد مثبت و گزارش شد که ۴۰ مورد مربوط به بیماران بستری در بخش‌های مختلف بیمارستان و ۲۵ مورد نمونه‌های مربوط به بیماران مرد و ۳۵ مورد بیماران زن و مبتلایان مشترک بیمارستان و ۲۵ مورد سال و سن بیماران در ۱۳ تا ۹۹ متوسط بود. نتایج یافته‌ها نشان داد که بیماران باکتری‌گیر می‌باشند. یکی از موارد که حساسیت بیماران بستری ارسال شده از بخش‌های مختلف بیمارستان شهید ادرار انجام شد، نتایج یافته‌ها به ارزیابی مقایسه با روش‌های آزمایش‌های دیگر، در خود چک‌گردانده شد. در این مدت استخراج نشان داد که برای آزمایش‌های جمع‌آوری‌های جمعیتی به در حالی تجزیه و تحلیل فراخوانده شد.

کلمات کلیدی: الگوی حساسیت، مقاومت آنتی بیوتیکی، میکروگانیسم، اینژلیه.

مجله پزشکی ارومیه، دوره بیست و چهارم، شماره دهم، ص ۱۹۰-۱۹۸۵، دی ۱۳۹۲.

آدرس مکاتبات: دانشگاه علوم پزشکی ارومیه، بیمارستان طالقانی، پهلوی علوم، تلفن: ۰۲۱۶۲۴۲۵۷۹۱.
Email: mejadrahim@yahoo.com
مقدمه

استقلال یی برخی از آنتی-بوتکینه‌ها و ویژه‌الطبیعی‌هانه به ویژه افزایش تجویز شده تحت پوشک و چه بدن نسبت زیستی افزایش جمعیت و تجمع افراد آسیب‌پذیر نسبت به بیماری‌های عفونی در مکان‌های عمومی منابع شری خوراکی که خانه‌ها سالماند و غیره منجر به افزایش سریع مقاومت آنتی-بوتکینه می‌کریه در سال‌های اخیر نشده است (1).

با کشف آنتی-بوتکینه‌ها در کنار بهبود روش‌های زیستی، بهبود تکنیک‌های تشخیصی و نیز با رفت سطح بهداشت کاهش شدیدی در بیماری‌های عفونی دیده شد اما ارزیابی از میکروبا توانست در بررسی آنتی-بوتکینه‌ها زندگی ناپاید بود به طوری که هنگام این روش میکروبا به آن بتواند میکوسیون‌های مناسب بیشتر مقاوم می‌گردند با چراکه در این نوع از عفونت‌ها به سطحی مقاوم به این آنتی-بوتکینه‌ها مشاهده شده‌اند.

ناتی نیز از این مشکل حاصل شده‌اند (2).

کنترل‌های آنتی-بوتکینه‌ها، گمان می‌شود استفاده از آن باعث رشد کن اپتیون‌های شوتولی به ویژه مشخص شد که باید از باکتری‌ها به روش ناتی استفاده به آنتی-بوتکینه‌ها مقاوم و بطری نیز از این مصرف به طوری که آنتی-بوتکینه‌ها نسبت به مقاوم نشان داده که راهی برای منجر به سطحی مقاوم به این آنتی-بوتکینه‌ها گردیده است.

کنترل‌های آنتی-بوتکینه‌ها، گمان می‌شود استفاده از آن باعث رشد کن اپتیون‌های شوتولی به ویژه مشخص شد که باید از باکتری‌ها به روش ناتی استفاده به آنتی-بوتکینه‌ها مقاوم و بطری نیز از این مصرف به طوری که آنتی-بوتکینه‌ها نسبت به مقاوم نشان داده که راهی برای منجر به سطحی مقاوم به این آنتی-بوتکینه‌ها گردیده است.

این تغییرات ممکن است به دلیل بیماری‌های عفونتی نویدی و بازپدیدی باید که محیط اکثر جهان را موجب به تولید آنتی-بوتکینه‌ها چیده‌ای قدرت به سایر باکتری‌ها مطلوب نموده، با اقدام به تجویز تجربی‌های بودن آزمایشی آنتی-بوتکینه‌ها نیز از این مشاهدات سامان‌بندی و غیره است این انتخاب ناساز و به انتخاب یک سایر منجر به منجر گردیده است.

مکانیزم مقاومت باکتری‌های علاوه بر شکست درمانی، با اقتصادی گردیده نیز به بیمار تنخیب می‌کرده (3).

مواد و روش کار

این پژوهش توصیفی پیشنهاد برنامه‌های اپی‌کلوس نسبت به میکوراناکسیمی‌ها و مقاومت آنتی-بوتکینه‌ها می‌باشد. در میکوپاتئمی‌هاBUCL اپی‌کلاس نسبت به بیماری‌های پیشرفته اپی‌کلاس 1988 تا 1390 درصد گرفته است. با توجه به مشاهدات برده با ساختار بیشتر، با یک آنتی-بوتگرام و نیز تحلیل وارده طولانی Intermediate Resistant گردیده در بروز بیماری‌ها گسته‌ترین سیستم سرمای دارای وارده مقاوم Resistant بوده و باقی ریشه‌های پایداری‌های شکست درمانی گردیده است.

از این نتیجه برخی از عفونت‌های بیماری‌ها در جامعه، به سال‌های 1995 تا 2011 مقاومت روبرو به افزایش مقاومت کلینولو در سایه‌های بیماری کمپونه‌ها به افزایش مقاومت توده‌گونه، انتخاب شکست کننده نیز این بروز از آزمایش‌ها کلیسی، بیمارکینه‌ها به سطحی شکست از این در ارتقاء بوده است. مقاومت به فلوراکبیلیو، مقاومت به گونه‌گونی این شکست بودن در بیمارستان، اسولد آلس و پریده‌ها مشاهده شد در مقابلها که با نشان از استفاده از ترکیب‌های مقاوم استفاده‌کننده.
15 نوع باکتری از نمونه‌های خشک جدایی کشت که اشپیرونی کلی با فراوانی 2.3 درصد و کلیسلا با فراوانی 7.5 درصد و استاف کواکولار منفی 20 درصد از شایع‌ترین آنها بودند. همچنین 64 درصد نمونه از بیماران گرفته شد که 28.8 درصد مربوط به بیماران با اختلال اقلامات انگام شد.

جدول شماره (1): فراوانی و فراوانی نوست میکروگیمی‌های ازوله شده به تفکیک انواع نمونه بیماران بستری

<table>
<thead>
<tr>
<th>نمونه</th>
<th>فراوانی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ردیاب</td>
<td>249</td>
<td>46.8</td>
</tr>
<tr>
<td>اولا</td>
<td>271</td>
<td>43.3</td>
</tr>
<tr>
<td>ترک</td>
<td>22</td>
<td>4.0</td>
</tr>
<tr>
<td>خون</td>
<td>66</td>
<td>9.7</td>
</tr>
<tr>
<td>ردیاب</td>
<td>22</td>
<td>3.7</td>
</tr>
<tr>
<td>سطح</td>
<td>29</td>
<td>4.8</td>
</tr>
<tr>
<td>مایه</td>
<td>0.63</td>
<td>0.3</td>
</tr>
<tr>
<td>مقایسه</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>کانتر</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>ترک</td>
<td>369</td>
<td>99.7</td>
</tr>
<tr>
<td>از سن</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>جمع کل</td>
<td>460</td>
<td>100</td>
</tr>
</tbody>
</table>

ایمیل نامه 278 درصد سفالونیوزین‌های نسل سوم با بیش از 50 درصد و در نهایت آمیکسین‌ها 49 درصد و سیپرو 39 درصد. بود و ماقبل میزان آنها مافالکین‌ها 278 درصد، کلیسلا 26.8 درصد، کوآپوکسازون‌ها 17 درصد، بودن در مرد سپتالیون اسید 33 درصد و نیترفلورانتون‌ها 10 درصد. نمایشگر دست آمد و ماقبل میزان داروها، مافالکین‌ها 21 درصد، نالیدیکسکس اسید 21 درصد و سیپرو 8 درصد. بود. شایع‌ترین باکتری‌های گرم مثبت به ترتیب استاف کواکولار منفی 91 درصد و
بحث و نتیجه‌گیری
نتایج شناسایی باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌ها از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باکتری‌های جدید از امکان‌های از نهاد منجر به کشف باک‌
References:

SENSITIVITY PATTERN AND RESISTANCE AGAINST ANTIBIOTICS IN ISOLATED MICROORGANISMS OF HOSPITALIZED PATIENTS

Alireza Nikoonejad¹, Naser Gharabaghi², Mohammad Davari³, Mohammad Ayromloo⁴, Rahim Nejad Rahim⁵*

Received: 19 Aug, 2013; Accepted: 22 Oct, 2013

Abstract

Background & Aims: The presence of resistant bacteria in different parts of hospitals and the problems these persistent bacteria cause in treating the patients urge the necessity of identification and precise knowledge about these bacteria and their sensitivity pattern and resistance against antibiotics. This investigation was conducted in order to determine the sensitivity pattern and resistance against antibiotics in isolated microorganisms from hospitalized patients.

Materials & Methods: This is a descriptive sectional investigation which was conducted from January 2009 to January 2011 in Taleghani Hospital in Urmia City and the cultured samples of patients from different parts of the hospital including urine, blood, phlegm, ulcer, discharge, etc. sent to the laboratory were investigated. In order to determine antibiogram disk agar diffusion (DAD) method was used, positive cultures were extracted and their results regarding the type of bacteria and antibiogram results were recorded in the experiment paper. The gathered data were analyzed using SPSS-20 software.

Results: From all cultured samples in two years, 964 samples were reported and 640 samples were from hospitalized patients from different parts of the hospital from which 48.4% of the samples were from the male patients and 51.6% from the female patients; and age average of the patients was 60 years and the age range of the patients was from 12 to 99. The highest sensitivity among all samples belonged to vancomycin (more than 90%). and the highest resistance belonged to cephalexin, erythromycin and cefixime (more than 70%). The most common bacterium and the most sensitive antibiotic (with ignoring vancomycin) were as follows, in urine samples: E.Coli 57.9%, nitrofurantoin – blood: negative staph coagulase 33.5%, rifampin – discharge: staph.aureus 38.6%, imipenem– ulcer: staph.aureus 38.6%, nitrofurantoin and co-trimoxazole – sputum : acintobacter 45.5%, rifampin.

Conclusion: The results of this research shows extensive increase in the resistance of the bacteria compared to common antibiotics the reason of which may be irregular consumption and prescription of antibiotics, so it is advised that more care shall be used in choosing antibiotics for the treatment and its prescription. Also, precise determination of antibiotic sensitivity pattern needs more extensive investigation with more samples in different treatment centers.

Keywords: Sensitivity pattern, Resistance, Antibiotics, Microorganisms, Hospitalized patients

Address: Department of Infectious Disease, Taleghani Hospital, Urmia University of Medical Sciences, Urmia, Iran Tel: +98 4413444591 Email: rnejadrahim@yahoo.com

SOURCE: URMIA MED J 2013: 24(10): 790 ISSN: 1027-3727

¹ Assistant Professor, Department of Infectious Disease, Taleghani Hospital, Urmia University of Medical Sciences, Urmia, Iran
² Assistant Professor, Department of Infectious Disease, Taleghani Hospital, Urmia University of Medical Sciences, Urmia, Iran
³ General Practitioner
⁴ BSc in Nursing, Urmia University of Medical Sciences, Urmia, Iran
⁵ Assistant Professor, Department of Infectious Disease, Taleghani Hospital, Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author)