تأثیر کاربردروپن و انجام خشک در کشت سلول‌های اندوتنیال بر روی پرهده انسانی

حسن نیک‌نژاد ۱، قاسم یزدانپناه ۲، تیمی دهیم ۳

تاریخ دریافت ۲۱/۰۵/۱۳۹۲، تاریخ پذیرش ۱۳۹۲/۰۴/۱۳

چکیده
پیش زمینه و هدف: پرهده انسانی دارای ویژگی‌های است که آن را بایوپریتات سنجی جهت استفاده در مهندسی بافت عرض می‌سازد. در این مطالعه پرهده انسانی با روش‌های مختلف نگهداری شد و از آن روزه‌های نگهداری بر روی ترکیبات ماتریکس خارج سلولی انسانی و چسبندگی سلول‌های اندوتنیال کشت داده شد. بررسی مقدار صورت‌گیری ANOVA

روش بررسی: پرهده انسانی سپس از تهیه با روش‌های کاربردروپنی (در دمای ۹۰ تا ۱۲۰ مایع به مدت ۲ ساعت) و انجام خشک (پروفیل‌سازی نگهداری) شد و ترکیبات ماتریکس خارج سلولی توسط رنگ آمیزی ایمونوسنتی‌سی از آبی‌آرنیکا میزان چسبندگی سلول‌های اندوتنیال کشت داده شد. در این بررسی، مقدار صورت‌گیری ANOVA

یافته‌ها: نتایج نشان داد که ساختار بافتی از نظر ترکیبات ماتریکس خارج سلولی در پرهده انسانی نگهداری شده با پرهده انسانی نگهداری شده و از نمونه‌های لپاروسکوپنی نگهداری شده با پرهده انسانی نگهداری شده و از نمونه‌های لپاروسکوپنی نگهداری شده است.

نتیجه‌گیری: کاربردروپن و پروفیل‌سازی نگهداری پرهده انسانی، می‌تواند تأثیراتی در ماتریکس خارج سلولی در پرهده انسانی داشته باشد. در این مطالعه کلیت‌کننده: انسانی، کاربردروپن، انجام خشک، سلول‌های اندوتنیال، چسبندگی، ماتریکس سلولی

مجله پزشکی اروپی. دوره بیست و صد، شماره دهم، ص ۷۶۳-۷۶۲. دی ۱۳۹۲

آدرس مکاتب: مرکز تحقیقات نانوتکنولوژی پزشکی و مهندسی بافت، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران، لفتن: ۲۲۶۹۴۹۸۴ Email: niknejad@sbmu.ac.ir

مقدمه
پرهده انسانی داخلی ترین لاشه جفت است و با داشتن

سناثان بافتی و ترکیبات ماتریکس خارج سلولی و پرهده انسانی، می‌تواند خواص منحصر به فرد‌داند جلوگیری از رشد

سپک‌های (۳) می‌تواند باعث کاهش بهبودی جلوگیری از ایجاد خمن و کمک به نحوه آن و تسریع ایمونولگی

شدن (۴) را از خود نشان دهد و به عنوان یک بافت ایمیلی برای

مهندسی بافت عرض مطرح بسیار (۴). پرهده انسانی جایگزین

بخش پایه است که برای کشت برخی رده‌های سلولی (۴)
تأثیر کارپورژوزنی و انجماد خشک در کشت سلول‌های...

۷۰۴

حسین نیکزاد و همکاران

نمونه‌های جفت (معدل ۱۲ عدد) و اجرای آن از سازاری‌های انتخابی ۳ که در هفته ۲۶ و ۲۷ پارادای قرار داده‌اند از بیمارستان های عفونی و آیت الله طالبی‌های تهران تهیه گردد. به اینکه جفت یک عضو زاده و دوم اخوانی است از زمان اینتی و رضایت کنندی نیز از آن این تعداد، گزارش آزمون‌های سرولوژیک برای تشخیص ۱ سرفیلس در هر مادران ایندکس بافت ملی بیمارستان‌های (PBS) حاوی ۲۵۰ گیکیال/میلی‌لیتر پی ۵ استرولوژیک و ۶ استرولوژیک پارافینوید در دما ۴۰ درجه سانتی‌گراد با آزمایشگاه محلی گردد که مکانیسم انتقال آن در بیماری می‌باشد. به این روش چدن با خونی کم‌ماین در زمان مصرف‌کننده بیشتری گرفت که مطلع این آب‌پاره شد. به درجه اینجیسی در هر مادران ایندکس بافت با ۶۰ درجه سانتی‌گراد در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده به این روش که سپس در انجام گرگردید شد. بعد از این مصرف‌کننده باfat می‌باشد که می‌باشد. به این روش چدن با خونی کم‌ماین در زمان مصرف‌کننده بیشتری گرفت که مطلع این آب‌پاره شد. به درجه اینجیسی در هر مادران ایندکس بافت با ۶۰ درجه سانتی‌گراد در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه نمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه نمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه نمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایط آب‌پاره در محیط آزمایشگاهی در زمان مصرف‌کننده، که در جفت که به ویژه Nمایشگاهی کاپورژوزن در شرایت...
برای بررسی میزان زندگی بودن سلول‌های آی تی بال‌های نمونه‌های نهی شده از برده‌امیان از تریتانول آب (Triton X-100) مخلوط شدیده شده بودن سلول‌های آی تی بال‌های نمونه‌ها اضافه شد و پس از ۳ دقیقه اکسیژن‌بردارری میزان زندگی بودن سلول‌های با استفاده از میکروسکوپ نوری از فاصله ۱۰ میکرون و تغییرات مواد را ثبت کرد.

عوامل استخری:
- DAPI
- Collagen type I (10 μg/ml, R&D; C7805)
- Laminin 5 (100 μg/ml, Chemicon; AB769)
- Fibronectin (10 μg/ml, R&D; MAB19562)
- Perlecan (1:300, Chemicon; AF1918)
- von-willbrand factor (Chemicon; MABT12)

Melting of the ice-cold samples was performed by the addition of a solution of penicillin/streptomycin (20,000 U/ml and 10 μg/ml, respectively) and trypsin-EDTA (0.25% in MEM/F12 media). The samples were then gently mixed and the cells were detached from the culture dishes.

After the samples had been treated with trypsin-EDTA, the detached cells were collected by centrifugation at 1,000 rpm for 5 minutes. The supernatant was aspirated and the cell pellet was resuspended in fresh culture medium.

The cells were then allowed to attach to the culture dishes and were incubated for 24 hours at 37°C in a humidified atmosphere containing 5% CO₂. After this period, the cells were fixed in 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. The cells were then stained with primary antibodies against various markers, and the images were acquired using a Confocal microscope.

The confocal images were analyzed using ImageJ software to quantify the expression of different markers in the cells. The results were compared with controls to determine the effects of different treatments on the expression of these markers.

In conclusion, this study demonstrates the utility of confocal microscopy in the analysis of cell attachment and proliferation. The findings can be used to guide further studies on the mechanisms underlying cell attachment and proliferation.

References:
- DAPI
- Collagen type I (10 μg/ml, R&D; C7805)
- Laminin 5 (100 μg/ml, Chemicon; AB769)
- Fibronectin (10 μg/ml, R&D; MAB19562)
- Perlecan (1:300, Chemicon; AF1918)
- von-willbrand factor (Chemicon; MABT12)
5 milli grom in 2 milli liter) be hep xane ehahe gredit ve yilhe.

JABSEMI:

Dose 3 milli angkhe shend, sips krestali teh formation DMSO sample/OD control × 100%.

Fisher

Tukey post-test

ANOVA

Means SD

P < 0.05
شکل شماره (1): تصاویر میکروسکوپی فلورسنت از رنگ آمیزی ایمونوهوستویمی ترکیبات ماتریکس خارج سلولی شامل کلاژن تب I، کلاژن تب III، کلاژن تب IV، فیبرونتین، لامینین و پرلکان در برده آمیون تازه تهیه شده (Fresh)، کیابوپروزرو شده (Cryopreserved)، نتایج نشان می‌دهد که کلاژن تب‌های III و IV، فیبرونتین، لامینین و پرلکان در همه اشکال آمیون به شکل یک لایه پوشش در طول گشای پایه قرار دارند کلاژن تب‌های I و III، فیبرونتین و لامینین در برده آمیون تازه تهیه شده به شکل یک لایه متراکم دیده می‌شوند، در حالی که در آمیون کیابوپروزرو شده و لیفوپلیزه این لایه دیگر دیده نمی‌شود. سلول‌های پره آمیون با رنگ آمیزی DAPI به شکل نقاط آبی رنگ دیده می‌شوند، رنگ آمیزی‌های بر روی 5 بافت مختلف با سه بار تکرار انجم شده است (خط نشانه = ۱۰۰ میکرومتر).

شکل شماره (2): تصویر میکروسکوپی فلورسنت از رنگ آمیزی ایمونوهوستویمی بر علیه مارکر انдоتلیالی (Wf αν) واکنش مثبت آنتی بادی اولی به علیه این مارکر در سلول‌های اندوتلیال کشت داده شده بر روی آمیون لیفوپلیزه نشان می‌دهد که پس از یک هفته سلول‌های کشت داده شده بر روی آمیون خسته شده از حفظ کرده‌اند، عدم آپارسپلیزه، برآورده‌ای از رنگ آمیزی DAPI از همان فیلد میکروسکوپی (خط نشانه = ۱۰۰ میکرومتر).
بک‌ها

برده آمیون انسانی به عنوان یک بیومتریال استفاده وسیعی در مهندسی بالات دارد (۴). یکی از مسائل مهمی که در ارتباط با استفاده از برده آمیون به عنوان جایگزین عروق مطرح می‌باشد، قدرت قبیل‌گی سلول‌های انдонتیالی بر روی آن می‌باشد. با توجه به روش‌های نگهداری مختلفی که برای استفاده از آن‌ها مطرح شده‌اند، بحثی در مورد ایده‌آلی که برای استفاده از آن‌ها مناسب می‌باشد، در خلال آن‌ها وجود ندارد.

نتایج در این مطالعه نشان داد که برده آمیون در مقایسه با سایر سلول‌های اندونتیالی آمیون (FAM) و لیپوهیپوزیت (LAM) در سطح سطح‌های نازک به نسبت سطح‌های نازک به مرکز بهبود می‌یابد. این نتایج نشان می‌دهد که کاراپروپزروشون و لیپوهیپوزیتیون تأثیری بر روی زیست‌سازگاری برده آمیون ندارند.

نمودار ۱۰: مقایسه جداگانه سلول‌های اندونتیالی پس از یک‌شانه روز بر روی برده آمیون نازک بهبود شده (Fresh) و لیپوهیپوزیت (LAM) در گروه کنترل جداگانه سلول‌های اندونتیالی بر روی پیت کشت سلول نشان داده شده است. منابع (۷).
سلول‌های آی‌تینال برده آمیتین کربوپیروشیت شده‌اند. هیچ تفاوتی در میزان چسبندگی سلول‌های انودوپلاست بر روی برده آمیتین نشان داده نمی‌شود. این نتایج با نتایج پژوهشی‌های دیگر تطابق دارد (23).

سلول‌های آی‌تینال برده آمیتین یک حلقه محیطی را در آنها تشکیل می‌دهند و به صورت به‌صورتی که در آنها حلقه‌های آی‌تینال به صورت مشابهی قرار می‌گیرند. این نتایج نشان می‌دهد که سلول‌های آی‌تینال برده آمیتین از نظر حلقه‌های آی‌تینال در سطح خارجی جلد قابل توجهی به‌طور مشابهی ساخته می‌شوند.

نکته‌های دیگر:

- سلول‌های آی‌تینال برده آمیتین به صورت مشابهی در سطح خارجی جلد قابل توجهی به‌طور مشابهی ساخته می‌شوند.

روش‌های کربوپیروشیت و لیفسیناسیون به مدت 12 ماه پیاده‌سازی شده‌اند. نتایج این به گونه‌ای ترتیب و میزان چسبندگی سلول‌های انودوپلاست با نمونه‌های آمیتین نشان داده نمی‌شود. این نتایج با نتایج پژوهشی‌های دیگر تطابق دارد (23).

سلول‌های آی‌تینال برده آمیتین یک حلقه محیطی را در آنها تشکیل می‌دهند و به صورت به‌صورتی که در آنها حلقه‌های آی‌تینال به صورت مشابهی قرار می‌گیرند. این نتایج نشان می‌دهد که سلول‌های آی‌تینال برده آمیتین از نظر حلقه‌های آی‌تینال در سطح خارجی جلد قابل توجهی به‌طور مشابهی ساخته می‌شوند.

نکته‌های دیگر:

- سلول‌های آی‌تینال برده آمیتین به صورت مشابهی در سطح خارجی جلد قابل توجهی به‌طور مشابهی ساخته می‌شوند.
References:


THE EFFECTS OF CRYOPRESERVATION AND LYOPHILIZATION ON ENDOTHELIAL CELLS ADHESION TO HUMAN AMNIOTIC MEMBRANE

Hassan Niknejad *, Ghasem Yazdanpanah2, Tina Deihim3

Received: 12 Aug , 2013; Accepted: 26 Oct , 2013

Abstract

Background & Aims: Human amniotic membrane has some specific properties making it an appropriate biomaterial for using in vascular tissue engineering. In this study, amniotic membrane was preserved with different methods. Effects of preservation on amniotic extracellular matrix and adhesion of cultured endothelial cells to membrane were compared with fresh samples of amniotic membrane.

Materials & Methods: Human amniotic membrane was preserved with cryopreservation (-80°C for 12 month) or lyophilization methods. Extracellular matrix components were assayed with immunohistochemistry method. The adhesion of cultured endothelial cells was studied with MTT assay. Results between groups were compared with ANOVA (Post-test Tukey).

Results: Results demonstrated that extracellular matrix components were same in cryopreserved samples in comparison to fresh ones but there are some differences in lyophilized samples. Adhesion of endothelial cells to lyophilized samples was significantly more than cryopreserved or fresh samples (P Value < 0.05).

Conclusion: Both cryopreservation and lyophilization affect extracellular matrix of human amniotic membrane which can determine the rate of the adhesion of endothelial cells to amniotic membrane. Lyophilized amniotic membrane is a better choice for culture of endothelial cells in vascular tissue engineering.

Keywords: Amnion, Cryopreservation, Lyophilization, Endothelial cells, Adhesion, Extracellular matrix.

Address: Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran. Tel: +98-21 22439847
Email: niknejad@sbmu.ac.ir

SOURCE: URMIA MED J 2013: 24(10): 762 ISSN: 1027-3727