بررسی اثرات میدان الکترومغناطیس بر مخاط کانال دفران و پروتوستات در رت

فاطمه افشاری ۱) جعفر سلیمانی راد ۲) غلامعلی ترابی اسکویی ۳) بهزاد یلبری ۴)

تاریخ دریافت ۰۳/۰۳/۱۳۹۲ تاریخ پذیرش ۰۵/۰۱/۱۳۹۲

چکیده

پیش زمینه و هدف: در نباتی مکرون، امرق و تجهیزات میدان الکترومغناطیس در سطح پیرو و بیش از حد استفاده کارا می‌گردد، نیز به آب‌سوزی

اگرای از اثرات این میدان‌ها تصمیم گرفته شده‌اند میدان‌های الکترومغناطیس بر مخاط کانال دفران و پروتوستات و نیز در مورد میکروژلوژی اسیرم مورد مطالعه قرار

گرفت.

مواد و روش کار: کار در این مطالعات در روز نیز Wistar گروه آزمایشی به مدت ۱۲ جوان و زیرزمین ۲ جوان در معرض میدان الکترومغناطیس با دندان ۵۰% که فاصله این دندان‌ها گروه‌های آزمایشی و کنترل با جابه‌جایی مهره‌های گردنه شدند و از کانال دفران و پروتوستات آن‌ها برای مطالعه با میکروسکوپ نوری میکروبرداری گردید. همچنین این مورد از تهیه آزمایش، مورد بررسی قرار گرفت.

یافته‌ها: نتایج به دست‌آمده نشان داد که در گروه آزمایشی افزایش سطح‌های مخاط کانال دفران و درد پروتوستات نسیب به گروه کنترل کاهش یافته و هم‌هادار سه‌گانه می‌باشد. افزایش بیماری در میکروژلوژی اسیرم در مقایسه با گروه کنترل نماینده نبود ولی در گروه آزمایشی پیدا کرد. به‌طور مشابه در بحث نتیجه‌گیری: امکان میکروژلوژی موجب ایجاد اثرات سوپرسیست می‌گردد.

کلمات کلیدی: میدان الکترومغناطیس، مورفولوژی اسیرم، مخاط کانال دفران، مخاط پروتوستات، پیدایش فریبینک

مجله پزشکی اربیوم، دوره بیست و چهارم، شماره هفتم، ص ۳۳۹-۳۵۰، مهر ۱۳۹۲

آدرس مکاتبه: تبریز، دانشگاه آزاد اسلامی، گروه هیپوپاتولوژی و انانومی، تلفن:۰۹۱۲۱۱۴۷۷۹۴ Email: f_afshar@iaut.ac.ir

مقیده

امنان هر روز در معرض برخورد با امواج الکترومغناطیس متعادل می‌باشد که ممکن است از مانع ایجاد گرد و بده توزیع و ناپایداری باشد. برخورد با امواج الکترومغناطیس در جهت ایجاد طبیعی و سبب ایجاد تاکیدهای امکان‌پذیر است که این می‌باشد. ناپایداری بی‌تغییر و بی‌تغییر در سطح میکروژلوژی اسیرم و غیر‌مکرونی ایجاد کرده که در هر دو صورت می‌تواند بر ری سطح سلولی و مولکولی اثرات مخربی داشته باشد. این میدان‌ها با عناوین چنین فاکتور استرس را می‌تواند موجب تغییر در سطح هورمونی و ایمنی شده و

استاد بازیگر، هیپوپاتولوژی و انانومی، دانشگاه آزاد اسلامی واحد تبریز (نورسی مسئول)

استاد گروه علوم تربیتی دانشگاه علوم پزشکی تبریز

مریم گروه علوم تشخیص دانشگاه علوم پزشکی تبریز

استاد بازیگر مهندسی پزشکی، دانشگاه آزاد اسلامی واحد تبریز
بررسی اثرات میانه میدان اکترومغناطیسی بر مخاط گاز خیاطی

مطالعات انجام شده در مورد نقش میدان اکترومغناطیسی از سوی محققین نشان داده است که این میانه‌های فیزیکی به‌صورت مکانیسم‌های مختلفی می‌تواند در پیشگیری از این تاثیرات به کار رود.

مواد و روش‌ها

در این تحقیق دستگاه مولد میدان اکترومغناطیسی با شدت ۵۰ گوس بار گرفته شد و رزیلیزهای زالادور ۲۰۰۰ نمونه گرفته شد. این نمونه‌ها به سرعت ۲۰۰ گرم در دقیقه تولید می‌شوند و در حال حاضر در برنامه‌های رایج استفاده می‌شوند.

آماره‌ها

این مطالعه به‌صورت آمار و روش‌های شناختی انجام شده است. انتخاب میانه میدان اکترومغناطیسی بر مخاط گاز خیاطی، تحقیقات قبلی برای انتخاب‌های مختلفی از میانه‌های مختلف استفاده کرده است.

نتایج

نتایج نشان می‌دهد که استفاده از میدان اکترومغناطیسی با شدت ۵۰ گوس بار بهبود نتایج در این تحقیق نسبت به حالت کنترل داشته است. این امر نشان دهنده این است که میدان اکترومغناطیسی نقش مهمی در بهبود نتایج در این تحقیق داشته است.

بحث

نتایج نشان داد که استفاده از میدان اکترومغناطیسی بهبود نتایج در این تحقیق نسبت به حالت کنترل داشته است.

در نهایت، می‌تواند به عنوان کنترل‌گیرنده‌ای در بهبود نتایج در این تحقیق به‌کار رود.
تصویر شماره (1): مخاط کانال دفران گروه کنترل و آزمایش. به پراکندگی مزه‌های تابث در راس سلول‌های گروه آزمایش توجه نمایید.

تصویر شماره (2): نشان‌دهنده گروه کنترل و آزمایش. به کاهش ارتفاع ایپی تلیوم غدد و کاهش ترشحات نشان‌دهنده نمایید.

آزمایش ارتفاع سلول‌های ایپی تلیوم نسبت به گروه کنترل کاهش یافته و ترشحات موجود در این غدد در مقایسه با گروه کنترل کاهش یافته است. افزایش تراکم هسته سلول‌های در گروه آزمایش از تغییرات دیگری است که به وضح قابل مشاهده می‌باشد (تصویر B-2).

در بررسی اسپیرمی‌های گروه کنترل نکته قابل توجه وجود پدیده (Ferning) یا سرخشی شدن بود که این حالات در اسپیرمی‌های مربوط به گروه آزمایش مشاهده نگردید (تصویر B-3). برای تعیین پدیده (Ferning) از اندازه‌گیری ابعاد و جهت بررسی مورفولوژی اسپیرم، به روش پایاکیکولا رنگ‌آمیزی شدند. در بررسی اسپیرم‌های مربوط به گروه کنترل و آزمایش حداکثر ۱۰ درصد انومالی‌های شدید که بیشترین نوع آنومالی‌های قابل مشاهده از نوع دم ماریپیچ و اسپیرم بدون سر بود.
بر اساس این امتیاز بندی نوع مورد مشاهده در اسامیرهای موجود بررسی دارای پایه‌های سه تایی و چهارتایی بودند بنابراین امتیاز متعلق به آن‌ها ۳ بود.

تصویر شماره (۲): اسامیر گروه کنترل و آزمایش به وجود بیده فرینگ در گروه کنترل نمایید رنگ‌آمیزی پایانیکولا.

نمودار شماره (۱): مقایسه ارتفاع اپی تلیوم کالک دکلن در گروه‌های کنترل (A) و آزمایش (B).

نماوت بین دو گروه از نظر آماری معنی‌دار می‌باشد (P<0.01).

نمودار شماره (۲): مقایسه ارتفاع اپی تلیوم غدد پروستات در گروه‌های کنترل (A) و آزمایش (B).

نماوت بین دو گروه از نظر آماری معنی‌دار می‌باشد (P<0.01).
بحث و نتیجه‌گیری
کاربرد روزافزون‌سازی مدل‌های امواج الکترومغناطیس در زندگی زیرزمینی تغییرات اندازه‌گیری شده است.

بر اساس مطالعات انجام گرفته گزارشات منافذ شده، بر اساس مدل‌های الکترومغناطیسی بر روی سیستم‌ها برخی از این مدل‌ها مورد نظر و یکی از این مدل‌ها، Pool، گزارش کرده که این مدل‌ها در تحقیقات امواج الکترومغناطیس واقعیت امواج الکترومغناطیس را توصیف می‌کند.

روپوتین و ترسیم در فرازمینه RNA، اولاً نشان داده که DNA می‌تواند بر روی سیستم الکترومغناطیسی جذابیت داشته باشد.

نتایج بسته‌ای از این مطالعه بانک افزایش تراکم هسته سیاله‌ای مخاط کالر ذخیره و پروتئن در گروه آزمایش نسبت به گروه کنترل می‌باشد. نتایج این مطالعه نشان می‌دهد که این واقعیت باعث افزایش سیاله‌ای می‌شود. همچنین گزارش شده که افزایش سیاله‌ای می‌تواند به افزایش جابجایی مولکول‌ها باعث شود.

پایلاژی مخاط کالر ذخیره و پروتئن در گروه آزمایش بود که این نتایج نشان می‌دهد که افزایش سیاله‌ای می‌تواند به افزایش جابجایی مولکول‌ها باعث شود.

یکی از اصول اصلی در این مطالعه امواج الکترومغناطیسی در مورد مطالعات انجام گرفته توسط کاربران مطالعات در این زمینه است.

در نهایت نتایج حاصل از این تحقیق بانک انجار می‌کند که امواج الکترومغناطیسی در مواد سیستمی که می‌شود.

نتیجه‌گیری کلی: بر اساس نتایج بسته دست آمده از مطالعه جادوگر که در ارتباط با امواج الکترومغناطیسی بر سلامتی انسان مخاطبان در اورژانس، بنا به افزایش بافت و با حالت سکوبین برای مدت محدود در معرض میدان‌های الکترومغناطیس قرار داده می‌شود و می‌تواند بر عملیات اطمینان از آثار سایر میزان تبدیل آزمایش‌های امواج الکترومغناطیس باشد.
References:

EFFECTS OF ELECTROMAGNETIC FIELD ON THE DUCTUS DEFERENT AND PROSTATE

Fateme Afshari¹*, Jafar Soleimani Rad ², Gholam Ali Torabi G³, Behzad Yasrebi ⁴

Received: 22 May , 2013; Accepted: 12 Aug , 2013

Abstract

Background & Aims: In the modern world of today, high level technologic facilities are necessary. The present study aimed to investigate the effects of electromagnetic field (EMF) on vasa deferent, prostate, and morphology of sperm.

Materials & Methods: In this study, male wistar rats were exposed to 50 Gause EMF 4 hours a day for 3 months. After the experimental period, the rats were sacrificed, sperms were obtained from epididymis; and tissue samples were obtained from vasa deferent and prostate and were prepared for histological study. Morphology of sperm was examined after smear preparation.

Results: According to the findings, the height of epithelium and the nuclei in the prostate decreased in the experimental group; and vasa deferent were condensed in comparison to the control group. In the vasa deferent stero cilia were disappeared and prostatic secretion were reduced. Morphology of sperm in the experimental group was similar to the control group. In the experimental group ferning test disappeared.

Conclusion: This finding indicates that EMF has a detrimental effect on semen producing organs.

Keywords: Electromagnetic field, Vasa deferent, Prostate, Morphology of sperm, Ferning test

Address: Department of Histopathology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Tel: +98 9141147794
Email: f_afshar@iaut.ac.ir

SOURCE: URMIA MED J 2013: 24(7): 533 ISSN: 1027-3727

¹ Assistant Professor, Department of Histopathology, Tabriz Branch, Islamic Azad University, Tabriz, Iran (Corresponding Author)
² Professor, Department of Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
³ Instructor, Department of Histology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
⁴ Assistant Professor, Department of Biomedical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran